

Search for bound di-neutron by comparing ³He(e,e'p)D and ³H(e,e'p)X measurements

Dien Nguyen (Nathan Isgur Fellow at JLab) Hall A/C Collaboration Meeting, June, 2022

On behalf of Analysis group: C. Neuburger (TAU), R. Cruz–Torres (LBNL), A. Schmidt (GWU), D.W. Higinbotham (Jlab), J. Kahlbow (TAU), P. Monaghan(CNU), E. Piasetzky (TAU), O. Hen (MIT)

Physics Motivation

Deuteron: only known bound di-nucleon pair

Evidence for (nn) as part of a larger nucleus

Di-neutron could be slightly unbound or slightly bound (~0.1 MeV)

Implication:

- Nucleon-Nucleon interaction
- Nucleus structure and More
- Goals: Setting the limits on

 $\Box \frac{\sigma_{nn}^{3H}}{\sigma_{D}^{3He}} : \text{At the same kinematic}$ $\Box \frac{S_{nn}^{3H}}{S_{3bbu}^{3H}} : \text{nn content of T spectral function}$

Y. L. Sun, et al, Phys. Lett. B 814 (2021) 136072.
 Y. Kubota, et al., Phys. Rev. Lett. 125 (2020) 252501.
 A. Spyrou, et al., Phys. Rev. Lett. 108 (2012) 102501.
 A. Gardestig, J. Phys. G 36 (2009) 053001.
 J. P. Kneller, G. C. McLaughlin, Phys. Rev. D 70 (2004) 043512.

Quasi-elastic ³He / ³H (e,e'p) experiment E12-14-011

Beam energy = 4.325 GeV

Kinematics		
LHRS – electrons	RHRS – protons	
3.543 [GeV/c]	1.481 [GeV/c]	
20.88 [deg]	48.82 [deg]	

Hall A, Tritium collaboration (2018)

Event selection cuts:

*R. Cruz-Torres, et al., Phys. Rev. Lett. 124 (21) (2020) 212501. *R. Cruz-Torres, et al., Phys. Lett. B797 (2019) 134890.

*Exactly the same cuts as previous analysis on this data

- <u>Acceptance</u>
 - -0.04 < **dp** < 0.04 [%]
 - -0.055 < **xptar** < 0.055 [rad]
 - -0.0275 < **yptar** < 0.0275 [rad]
- <u>Vertex</u>
 - -0.095 < **vz** < 0.095 [m]
 - $|L_vz R_vz| < 3\sigma$ [m]
- <u>Coinc. time</u>
 - |t1-t4|/2 < 3σ [ns]
- <u>Particle ID</u>
 - L_prl1+L_prl2/1000/L_mom > 0.5
- Suppression of FSI
 - θrq < 0.654 rad = 37.5 deg

Relationship between cross section and counts

$$\sigma = \frac{N}{\varepsilon \mathcal{L}} = \frac{N}{\varepsilon Q f_{LT} A B}$$

- σ cross section
- *N* measured counts
- ε detection efficiency
- \mathcal{L} integrated luminosity, = $Q f_{LT} A B$
- Q total uncorrected charge
- f_{LT} live-time fraction
- A nominal target density (mg/cm²)
- B target boiling correction factor

Relationship between cross-section and counts

values and uncertainties (H stands for ³He, T stands for ³H)

- $Q_H/Q_T = 0.936 + /-0.013$
- $B_H/B_T = 1.041 + -0.004$
- $f_{LT,H}/f_{LT,T} = 1.002 + /-0.01$

Target density is complicated because there is a 2.78% contamination fraction of He-3 inside the tritium cell:

•
$$A_H / A_T = \frac{53.4}{85.1(1 - 0.0278)} = 0.645 \pm 0.01$$

We define the relative normalization between the two configurations as:

$$n = \frac{Q_T}{Q_H} \cdot \frac{f_{LT,T}}{f_{LT,H}} \cdot \frac{A_T}{A_H} \cdot \frac{B_T}{B_H}$$

 $n=1.632\pm0.041$

The He-3 contamination factor is

x = c nx = 0.0278 n x = 0.0454 ± 0.0011

Data from experiment after selection cuts

7.7 MeV

- Tritium: 8.482 MeV
- He-3: 7.718 MeV
- Deuteron: 2.225 MeV

Missing Energies

- He-3:
 - 2-body: 5.5 MeV
 - 3-body threshold:
- Tritium
 - 3-body threshold: 8.5 MeV

Missing Energy and missing mass

Likelihood Analysis Approaches

Step 1: Estimating the He-3 contamination

• He-3 contamination =

• He-3 spectrum * (He-3 contamination fraction) * (H-3 lumi. / He-3 lumi.)

(0.0278) * (1.6321)

Step 2: Define the tritium integration window

Missing Energy

Let: (Di-neutron signal region) $N_{2hbu}^{^{3}H}$ = tritium counts from [$-\infty$, 7]

 $N_{2bbu}^{^{3}He}$ = he-3 counts from [$-\infty$, 6.2]

Expected background from He-3 contamination is $x \cdot H$ = 0.045 * H

Step 3: Estimate likelihood.

One Parameter of interest: $R = \sigma_{2bbu}^{^{3}H} / \sigma_{2bbu}^{^{3}He}$, the cross section ratio

We can write down the likelihood of the data $(N_{2bbu}^{^{3}H}, N_{2bbu}^{^{3}He}, n, c, \epsilon)$ given guesses of the parameters $(R, \lambda_{2bbu}^{^{3}He}, n_0, c_0, \epsilon_0)$.

$$L = P(N_{2bbu}^{^{3}\text{He}}|\lambda_{2bbu}^{^{3}\text{He}}) \cdot P(N_{2bbu}^{^{3}\text{H}}|n_{0}\lambda_{2bbu}^{^{3}\text{He}}(c_{0} + \epsilon_{0}R))$$
$$\cdot G(n - n_{0}|\sigma_{n}) \cdot G(c - c_{0}|\sigma_{c}) \cdot G(\epsilon - \epsilon_{0}|\sigma_{\epsilon}),$$

From data:

- N³_{2bbu}: Count in 3H 2bbu (nn) signal region
 N³_{2bbu}: Count in corresponding 2bbu signal region in 3He
- : relative normalization factor n
- : contamination factor С
- : relative efficiency for detecting 3H and 3He 2bbu event ϵ (Determine by data-driven method)

(This factor is nessesary because the unknown binding energy of di-neutron)

Four nuisance parameters:

- λ_{2hbu}^{3He} : True average count rate for 2bbu on 3He
- n_0, c_0, ϵ_0 : True value of n, c, ϵ

 $\sigma_{n,c,\epsilon}$: present the uncertainty in different terms

Calculating limits based on change in L

The procedure:

0(-)

- Step over all possible values of *R*, the parameter of interest
 - Find the values of the nuisance $(\lambda_{2bbu}^{3He}, n_0, c_0, \epsilon_0)$ parameters for which L is maximized.
- Find the value of R where the conditionally maximized L drops by some significance factor:

• $\Delta \log(L) = 0.5$	68%	1σ
	0 - 0 /	2

•	$\Delta \log(L) = 2$	95%	2σ
•	$\Delta \log(L) = 4.5$	99.7%	3σ
•	$\Delta \log(L) = 8$	99.99%	4σ
•	$\Lambda \log(L) = 12.5$	99,9999%	5σ

Step 4: determining relative efficiency

- Assume shape of 2bbu missing energy spectrum for Helium-3 and Tritium are the same
- Use the 3He spectrum in 2bbu region as a template for the 2bbu 3H spectrum
- Shift this spectrum to simulate different di-neutron binding energies B_{nn}
- Integrate over spectrum in 2bbu region for each binding energy $\propto \varepsilon_{nn} (B_{nn})$
- Divide by integral over non-shifted spectrum: $B_d = 2.2 MeV \propto \varepsilon_d$

Step 4: determining relative efficiency

We can calculate:

$$\epsilon = \frac{\int_{6.2 \text{ MeV} - B_d}^{6.2 \text{ MeV} - B_d + B_{nn}} N^{^3\text{He}} dE_m}{\int_{6.2 \text{ MeV} - B_d}^{6.2 \text{ MeV} - B_d} N^{^3\text{He}} dE_m}$$

- ~ 100% for di-neutron with binding energy equal to that of D2
- ~0 % for di-neutron with zero binding energy which is indistinguishable in our measurements from 3bbu

We can not estimate relative efficiency for detecting di-neutron bound by more than 2.2 MeV since there is unavoidable contamination of 3bbu, we can set lower bound as dashed line.

For each di-neutron binding energy the value of R at each confidence level gives the exclusion limits

16

Exclusion limit on $R = \sigma_{2bbu}^{^{3}H} / \sigma_{2bbu}^{^{3}He}$

Let S represent the integral of the spectral function over p_m , E_m .

$$S_{nn}^{^{3}H} = \int d^{3}p_{miss} S^{^{3}H}(E_{miss}^{nn}, \vec{p}_{miss})$$
$$S_{3bbu}^{^{3}H} = \int d^{3}p_{miss} \int_{E_{3bbu}}^{\infty} dE_{miss} S^{^{3}H}(E_{miss}, \vec{p}_{miss}).$$

Type equation here.We aim to place exclusion limits on ratio:

$$\frac{S_{nn}^{^{3}\text{H}}}{S_{3bbu}^{^{3}\text{H}}} = \left[\frac{\sigma_{nn}^{^{3}\text{H}}}{\sigma_{2bbu}^{^{3}\text{He}}}\right] \cdot \left(\left[\frac{\sigma_{2bbu}^{^{3}\text{He}}}{\sigma_{3bbu}^{^{3}\text{He}}}\right] \cdot \left[\frac{\sigma_{3bbu}^{^{3}\text{He}}}{\sigma_{3bbu}^{^{3}\text{H}}}\right] \cdot \left[\frac{S_{nn}^{^{3}\text{H}}}{S_{3bbu}^{^{3}\text{H}}}\frac{\sigma_{3bbu}^{^{3}\text{H}}}{\sigma_{nn}^{^{3}\text{H}}}\right]\right)$$

Let S represent the integral of the spectral function over p_m , E_m .

Let S represent the integral of the spectral function over p_m , E_m .

c. Ciofi and Katari spectral function

Let S represent the integral of the spectral function over p_m , E_m .

Let S represent the integral of the spectral function over p_m , E_m .

Results: Put all together

Summary

□ We search for a bound di-neutron system using the 3He and 3H mirror nuclei.

- We found no evidence of such a state and establish an upper limit.
- Our sensitivity degrades rapidly as the di-neutron binding energy decreases.
- Dedicated QE experiments with better resolution can be more sensitive to a near threshold nn resonance or bound system.

 $\Box \frac{\sigma_{nn}^{3H}}{\sigma_{2bbu}^{3He}} < 0.9 \% \text{ at the same kinematic at 95\% confidence level}$ $\Box \frac{S_{nn}^{3H}}{S_{2bbu}^{3H}} < 1.5 \% \text{ at 95\% confidence level}$

D. Nguyen ^{a,b,1}, C. Neuburger ^{c,1}, R. Cruz-Torres ^{d,b}, A. Schmidt ^{e,b}, D.W. Higinbotham ^{a,*}, J. Kahlbow ^{b,c}, P. Monaghan ^f, E. Piasetzky ^c, O. Hen ^b

^a Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA

^b Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

- ^c School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6997845, Israel
- ^d Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- ^e George Washington University, Washington, DC, 2005, USA
- ^f Christopher Newport University, Newport News, VA, 23606, USA

PHYSICS LETTERS