E12-11-007: Asymmetries in Semi-Inclusive Deep-Inelastic ($e, e'\pi^{\pm}$) Reactions on a Longitudinally Polarized ³He Target at 8.8 and 11 GeV

Outline

- Solenoid Large Intensity Device (SoLID) and E12-11-107
- 3D nucleon structure, TMDs, and SIDIS
- Update for E12-11-107
 - Worm-gear functions
 - Beam request and projections

Solenoidal Large Intensity Device (SoLID)

- Maximize scientific outcome of JLab 12 GeV upgrade
 - QCD Intensity frontier (high luminosity 10³⁷⁻³⁹/cm²/s)
 - Large detector acceptance with full azimuthal coverage
- Rich physics programs
 - Precision test of SM and search of new physics
 - 3D momentum imaging of nucleon spin
 - Precision J/ ψ production near the threshold
- Complementary and synergistic with the EIC science
 - Proton spin and mass
 - Spin: valence quark tomography in momentum space
 - Mass: precision J/ψ production near threshold

0.4

0.3

0.2

0.1

-0.

-0.2

-0.3

-0.5

Strong Collaboration

- 270+ collaborators, 70+ institutes from 13 countries
- Strong theory support
- Active development and validation of the pre-conceptual design and physics programs

Progresses Since Approval of SoLID Experiments

- Since 2010: Five SoLID experiments approved by PAC with high rating
 - 3 SIDIS (including E12-11-007), 1 PVDIS, 1 threshold J/ ψ
 - 6 run group experiments
- CLEO-II magnet arrived at JLab in 2016, cold test on-going
- 2014: pCDR submitted to JLab with cost estimation, updated in 2017 and 2019
- Director's Reviews in 2015, 2019 and 2021
- 02/2020: SoLID MIE (with updated pCDR/estimated cost) submitted to DOE
- DOE funded Pre-R&D on Cherenkov/GEM and DAQ tests started 02/2020 and mostly completed
- 03/2021: SoLID Science Review, went successfully
- Consistent effort on pre-conceptual design and pre-R&D with the support of JLab and DOE.
- New beam test to verify high luminosity (high rate/high radiation) capability of the detectors and DAQ.

CLEO II coil at JLab

Overview of E12-11-007

- SoLID SIDIS program: Azimuthal Asymmetries (SSA and DSAs) from SIDIS π^{\pm}
 - Longitudinally polarized ³He target and polarized electron beam
 - Combined with DSA (A_{LT}) from E12-10-006 with transversely ³He polarized target
 - Access to helicity g_{1L} and "worm-gear" functions g_{1T} , h_{1L}^{\perp}
 - Study quark spin-orbit correlations
- Approved by PAC37
 - 35 PAC days of 11 GeV and 8.8 GeV beam at 15 μ A
 - Match statistics of E12-10-006
 - Precision 4D mapping of A_{UL} , A_{LT} , and A_{LL} for neutron
- Jeopardy at PAC50

 ϕ_h

hadron plane

 P_h

SIDIS and Structure Functions

SIDIS differential cross sections

 $d\sigma$

- 18 Structure functions $F(x, z, Q^2, P_T)$
- In parton model, $F(x, z, Q^2, P_T) \rightarrow$ convolution of TMDs and fragmentation functions

$$+ \lambda_e S_T \left[\sqrt{1 - \epsilon^2} F_{LT}^{\cos(\phi_h - \phi_S)} \cos(\phi_h - \phi_S) + \sqrt{2\epsilon(1 - \epsilon)} F_{LT}^{\cos(\phi_h - \phi_S)} \cos(\phi_h - \phi_S) \right] \right\}$$

S

Leading Twist TMD PDFs

- TMD PDFs link the intrinsic motion of partons with quark spin and nucleon spin
 - Probes orbital motion of quarks
 - Access to all leading twist terms through SIDIS differential cross sections

<u>E12-11-007</u>:

Single Spin Asymmetry and Double Spin Asymmetries:

 $L \neq ^{?} O \rightarrow$ Transverse motion

 $\begin{array}{ll} \mathbf{A}_{\mathrm{UL}}^{\sin 2\phi_{h}} & \propto h_{1\mathrm{L}}^{\perp} \otimes H_{1}^{\perp} \\ \\ \mathbf{A}_{\mathrm{LT}}^{\cos(\phi_{h}-\phi_{S})} & \propto g_{1\mathrm{T}} \otimes D_{1} \\ \\ \\ \mathbf{A}_{\mathrm{LL}} & \propto g_{1\mathrm{L}} \otimes D_{1} \end{array}$

Large acceptance, high statistics, and precision measurement with SoLID is essential for 4D mapping and separation of azimuthal angular modulation

"Worm-gear" Functions

$$h_{1L}^{\perp} = \checkmark - \checkmark +$$

$$g_{1T} = \checkmark - \checkmark +$$

- Dominated by interference between wave function components that differ by one unit of quark OAM
 - Re[(L=0)_q × (L=1)_q]
 - Complementary information about imaginary part from Boer-Mulders effects and Sivers effects
 - OAM-spin correlations
- A genuine sign of intrinsic transverse motion
 - No analogous terms in GPD
 - No dynamical generation by FSI from coordinate space densities

Worm Gear

Test of Theoretical Predictions

- Various theoretical predictions available
 - Lattice QCD calculations
 - Quark models
- $h_{1L}^{\perp} = -g_{1T}?$
 - Cylindrical symmetry around y direction
 - Valid in many quark models
 - Favored by Lattice QCD calculations
- WW & WW-type approximations
 - Assume "pure twist-3" and quark mass terms are small
 - Indirect information on transversity

Light-Cone CQM B. Pasquini B.P., Cazzaniga, Boffi, RD78, 2008

Experimental Observables

- One SSA and two DSAs: A_{UL} , A_{LT} , and A_{LL}
 - Share commissioning and A_{LT} data with E12-10-006
- 35 PAC days for Longitudinally polarized target and polarized electron beam
 - 11 and 8.8 GeV beam at 15 uA, with high beam polarization (85%)
 - High in-beam longitudinal target polarization (60%), with transverse target polarization from E12-10-006 (g₁₁)
 - High polarized luminosity 10³⁶ cm⁻²s⁻¹
- High statistics and well controlled systematic uncertainty
 - Precise 4D mapping with 1000-1400 bins for each asymmetry and charged pion
 - Neutron Asymmetries: $\delta A_{\text{stat.}} \approx 0.005$
 - Expected systematics $\delta A_{sys}/A \approx 7\%$ (relative) with the large symmetric acceptance from SoLID

Experimental Setup

- SoLID-SIDIS configuration
- Longitudinally polarized ³He Target
- Full 2π coverage of polar angle from 8°-24°
 - $8^{\circ} < \theta < 14.8^{\circ}, 1 < P < 7 \text{ GeV/c}$
 - $16^{\circ} < \theta < 24^{\circ}, 3.5 < P < 7 \text{ GeV/c}$ (electron)
 - $\delta p/p \sim 2\%$, $\delta \theta \sim 0.6 mrad$, $\delta \phi \sim 5 mrad$
- High luminosity, high data rate

Technical Requirements

- High polarized luminosity
 - High precision measurement of small asymmetries in 4-dimensional binning
- Full azimuthal coverage
 - Control systematic uncertainties over the angular modulation
- Good momentum and angular resolutions
 - Four-dimensional binning over the kinematic variables (x, z, Q², and P_T)
- High data rates
 - Trigger in electron: FAEC + SPD + LGC, LAEC + SPD; or hadron: FAEC + SPD
 - DAQ rate < 100 kHz</p>
- **SoLID** will fulfill all the requirements

Lattice Calculation on Worm-gear Shift

Lattice calculations on worm-gear shift

$$[\langle k_x \rangle_{TL}](Q^2) \sim \frac{\int_0^1 dx \left[g_{1T}^u(x, Q^2) - g_{1T}^d(x, Q^2) \right]}{\int_0^1 dx \left[f_1^u(x, Q^2) - f_1^d(x, Q^2) \right]}$$

- B. Yoon et al., Phys. Rev. D96, 094508 (2017)
- Consistent results from two discretization schemes at quark separation $b_T > 0.3$

First Global Extraction of Worm-gear Function g_{1T}

- S. Bhattacharya et al., Phys. Rev. D105, 034007 (2022)
 - COMPASS, HERMES, and JLab 6 GeV data
 - Working with the authors for SoLID projections

More precise neutron data are needed for a better flavor separation

Run Group Proposal: g_2^n/d_2^n measurement

E12-11-007A/E12-10-006E, Approved in 2020. Spokesperson: T. Ye and C. Peng

Answers to Jeopardy Charge

Is there any new information that would affect the scientific importance or impact the experiment since it was originally approved?

- First global extraction of worm-gear function g_{1T}, new lattice calculations (worm-gear shift)
- More precise neutron data are needed

If the experiment has already received a portion of its allocated beam? N/A

What is the status of the collaboration in terms of institutes, committed staff, and prospective students?

- Active and developing collaboration with 70+ institutes from 13 countries
- Recent example: successful pre-R&D with committed staff and students

Should the remaining beam time allocation and experiment grade be reconsidered?

- Beam time request remains the same
- Recent theoretical calculation and g_{1T} extraction further strengthen the importance of more precise data from this experiment It should remain the highest rating.

Summary

- Active and successful development of SoLID
 - Mature pre-conceptual design and successful pre-R&D
 - Positive feedback from DOE science review
- E12-11-007 requires 35 PAC days of 11 GeV and 8.8 GeV beam at 15 uA
 - Precision measurement of SIDIS at the QCD luminosity frontier
 - Same setup with E12-10-006, with a high polarization beam and a longitudinally polarized ³He Target
- Physics impact on TMDs
 - $A_{UL} \rightarrow h_{1L}$]
 - $A_{LT} \rightarrow g_{1T}$ "worm-gear" distribution, $Re[(L=0)_q \times (L=1)_q]$
 - $A_{LL} \rightarrow g_{1L}$
 - Probe the 3D spin structure of nucleon and investigate OAM-spin correlations
 - Precise neutron data from this experiment is needed to test various theoretical predictions

BACKUP

Systematic Uncertainties

Source	Type	$A_{UL}^{\sin 2\phi_h}$	$A_{LT}^{\cos(\phi_h - \phi_S)}$	A_{LL}
Raw Asymmetries	absolute	1×10^{-3}	negligible	negligible
Random Coinc. Background Subtraction	relative	1%	1%	1%
polarimetry	relative	3%	4%	4%
Nuclear Effects	relative	4%	4%	4%
Diffractive Vector Meson	relative	3%	3%	3%
Radiative Corrections	relative	2%	3%	3%
Total	absolute	1×10^{-3}	negligible	negligible
	relative	7%	7%	7%
Stat. Uncertainty for a Typical Bin	absolute	$5 imes 10^{-3}$	4×10^{-3}	4×10^{-3}

Systematic < Statistical uncertainties

Polarized Target Development

The effective luminosity is defined as $P_{t,pol}^2 \times L$ where $P_{t,pol}$: target polarization, L: luminosity SoLID-SIDIS proposed effective luminosity: $36 \times 10^{34} / (cm^2 \text{ sec})$

Image credit: G. Cates

Projections: A_{UL}

1 of 48 Z-Q² bins for the asymmetry of π^- and π^+

Projections: A_{LT}

1 of 48 Z-Q² bins for the asymmetry of π^- and π^+

Projections: A_{LL}

1 of 48 Z-Q² bins for the asymmetry of π^- and π^+

SoLID Collaboration Strength

- Each sub-system has several groups participating in pre-conceptual design and pre-R&D, efforts are ramping up
- These groups have experience with the type of detector.
 - 1. Ecal/SPD: UVa, Shandong, Tsinghua, ANL, UIC, ...
 - 2. LGC: ANL, Temple, NMSU
 - 3. HGC: Duke, Regina, Stony Brook
 - 4. GEM: UVa, GWU/Bates, USTC, CIAE, Lanzhou, Tsinghua, IMP
 - 5. DAQ: JLab, U-Mass, Rutgers
 - 6. Magnet, Infrastructure/supporting structure, project management: JLab, ANL
 - 7. Simulation/Software: Duke, Syracuse, ANL, UVa, Temple, NMSU, JLab,...
 - 8. MRPC (enhanced): Tsinghua, USTC, ...

Possible contributions from Canadian group (HGC) Chinese groups (MRPC)

SIDIS (charged pions) Rates Comparison between SoLID and CLAS12

DIS cuts: Q²>1 (GeV/c)², W > 2.3 GeV, W' > 1.6 GeV applied (longitudinal polarization)

SoLID: pol ³He target 1 * 10³⁶ /cm²/s acceptance: 1.0 GeV < P_e < 7.0 GeV, 8⁰ < θ_e <24⁰, 2.5 GeV < P_{π} < 7.5 GeV, 8⁰ < θ_{π} <15⁰, $\phi = 2\pi$ CLAS12: pol ³He target 0.9 * 10³⁴ /cm²/s acceptance: 0.5 GeV < P_e < 7.0 GeV, 5⁰ < θ_e <125⁰, 0.5 GeV < P_{π} < 7.5 GeV, 5⁰ < θ_{π} <125⁰, $\phi = \pi$

ע ¹ני עריין 10.15 Q² (GeV²) 0.30 < z < 0.40 0.2 GeV < P_T < 0.4 GeV 0.40 < z < 0.50 0.50 < z < 0.60 0.60 < z < 0.70 10H 600 0 600 00⁰ 0.05 Q² (GeV²) 0.2 [†]∺ SoLID 8.8 GeV (He³) $0.4 \text{ GeV} < P_{T} < 0.6 \text{ GeV}$ 0.15 S • SoLID 11 GeV (He³) ■ EIC e-p √s = 29 GeV 10 **11**1 1000 0.1 600 600 0.05 0.2 0.2 0.4 0.6 0.2 0.4 0.6 0.4 0.6 0.2 0.4 0.6 0 Х Х Х Х ∠ ⁺⊭ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ Q² (GeV²) 0.30 < z < 0.40 0.2 GeV < P_T < 0.4 GeV 0.40 < z < 0.50 0.50 < z < 0.60 0.60 < z < 0.70 10Ë 0.1 é°° 0.05 Ŀ Q² (GeV²) 0.2 [†]⊭ VSS 0.15 S ▲ SoLID 8.8 GeV (NH₂) $0.4 \text{ GeV} < P_{T} < 0.6 \text{ GeV}$ ▲ SoLID 11 GeV (NH) ■ EIC e-p s = 29 GeV 0.1 10 βŀ 600 0.05 F 0.4 0.2 0.4 0.2 0.6 0.6 0.2 0.4 0.6 0.2 0.4 0.6 Ō Х Х Х EIC: integrated luminosity 10 fb⁻¹

Complementary to EIC

28