PR12-22-005

A Search for a Nonzero Strange Form Factor of the Proton at 2.5 (GeV/c)²

R.Beminiwattha, S.P.Wells, N.Simicevic, C. Palatchi, K.Paschke, S.Ali, X.Bai, G.Cates, R.Lindgren, N.Liyanage, V.Nelyubin, X.Zheng, B.Wojtsekhowski, S.Barcus, A.Camsonne, R.Carlini, S.Covrig Dusa, P.Degtiarenko, D.Gaskell, O.Hansen, D.Higinbotham, D.Flay, D.Jones, M.Jones, C.Keppel, D.Meekins, R.Michaels, B.Raydo, G.Smith, H.Szumila-Vance, A.S.Tadepalli, T.Horn, E.Cisbani, E.King, J.Napolitano, P.M.King, P.A.Souder, D.Hamilton, O.Jevons, R.Montgomery, P.Markowitz, E.Brash, P.Monaghan, T.Hobbs, G.Miller, J.Lichtenstadt, T.Kolar, E.Piasetzky, G.Ron, D.Armstrong, T.Averett, S.Mayilyan, H.Mkrtchyan, A.Mkrtchyan, A.Shahinyan, V.Tadevosyan, H.Voskanyan, W.Tireman, P.Datta, E.Fuchey, A.J.R.Puckett, S.Seeds, C.Munoz-Camacho

aTech, Indiana, UVa, JLab, CUA, INFN - Roma, Temple, Ohio, Syracuse, Glascow, FIU, CNU, Fermilab, UWashington, Tel Aviv U, Hebrew U, W&M, AANL Yerevan, Northern Michigan, UConn, Orsay

Charge symmetry and the nucleon form factors

Charge symmetry is assumed for the form factors, $G_E^{u,p} = G_E^{d,n}$, etc. and used to find the flavor separated form-factors, measuring $G_{E,M}^{p,n}$ to find $G_{E,M}^{u,d}$

 $G_{E}^{p} = \frac{2}{3}G_{E}^{u,p} - \frac{1}{3}G_{E}^{d,p} - \frac{1}{3}G_{E}^{s}$ $G_E^n = \frac{2}{2}G_E^{u,n} - \frac{1}{2}G_E^{d,n} - \frac{1}{2}G_E^s$

But this can broken! One way is to have a non-zero strange form-factor, which breaks the "2 equations and 2 unknowns" system

The weak form factor provides a third linear combination:

$$G_E^{p,Z} = \left(1 - \frac{8}{3}\sin^2\theta_W\right)G_E^{u,p} + \left(-1 + \frac{4}{3}\sin^2\theta_W\right)G_E^{u,p}$$

A strange quark form factor would be indistinguishable from a broken charge symmetry in u,d flavors

$$\delta G_E^u \equiv G_E^{u,p} - G_E^{d,n}$$
$$\delta G_E^d \equiv G_E^{d,p} - G_E^{u,n}$$

So, more generally: this experiment tests the assumption of charge symmetry which is crucial to the flavor decomposition of the form factors

Strangeness form factors

Polarized electron beam elastic e-p scattering

$$egin{aligned} A_{_{PV}} &= -rac{G_FQ^2}{4\pilpha\sqrt{2}}\cdot\left[(1-4\sin^2 heta_W)-
ight.\ &+\epsilon'(1-4\sin^2 heta_W)
ight] \,. \end{aligned}$$

 $A_{PV} = 150 \text{ ppm at } \theta = 15.5^{\circ}, Q^2 = 2.5 \text{ GeV}^2 \text{ (for sFF = 0)}$

 $A_{PV} = (-226 \text{ ppm}) * [0.075 + 0.542 - 6.43* (G_M^s + 0.32 G_E^s) + 0.038]$

EMFF O_{W}

axial

strange form-factors

PVES "counting" experiments G0

Mainz A4

Total energy of electron

PVDIS-6

Time of flight of recoil proton

Calorimetry + Cerenkov PID

Proton strange form factors via parity violating elastic electron scattering

Strange form factors consistent with zero at low Q^2 , but do not rule out non-zero values at higher Q^2 , especially for magnetic form factor which is more accessible at higher Q²

Strange form-factor predictions

Follows work from *Phys.Rev.C* 91 (2015) 3, 035205 (LFWF to tie DIS and elastic measurements in a simple model)

Tim Hobbs and Jerry Miller have both joined the collaboration

Strange form-factors on the lattice

J.Green etal, 2015

Q^2 dependence of F_2/F_1

Cates, de Jager, Riordan, Wojtsekowski, Phys.Rev.Lett. 106 (2011) 252003

pQCD prediction for large Q^2 : $S \rightarrow Q^2 F_2 / F_1$

pQCD updated prediction: $S \rightarrow \left[Q^2/\ln^2(Q^2/\Lambda^2)\right] F_2/F_1$

Flavor separated contributions: the log scaling for the proton form factor ratio at few GeV² is likely "accidental".

The lines for individual flavor are straight!

Q² dependence of Q⁴F₁

$$F_{1p} = e_u F_1^u + e_d F_1^d + e_s F_1^s$$

$$F_{1n} = e_u F_1^d + e_d F_1^u + e_s F_1^s$$

$$F_1^u = 2F_{1p} + F_{1n} - F_1^s \qquad F_1^d = 2F_{1n} + F_{1p} - h$$
Assuming $\delta G_{E,M}^s \sim G_D \sim 0.048 \longrightarrow \delta(Q^4 F_1^u) \sim$

$$G_{E,M} = \sigma_{E,M} = \sigma_{E$$

$$F_1 = \frac{G_E + \tau G_M}{1 + \tau} = \frac{G_E + 0.7G_M}{1.7} \sim \frac{G_D}{1.7}$$

- remain an important constraint
- The quark flavor content of the form-factor must be known for this purpose!

• Form factors are a crucial constraint on GPDs, and the flavor content must be understood • Whatever future data informs GPDs and the nucleon femtography project, form-factors will

Experimental concept

- Elastic kinematics between electron and proton
- Full azimuthal coverage, ~42 msr
- High resolution calorimeter for electron arm
- Angular correlation e-p

- 6.6 GeV beam
- Scattered electron at 15.5 degrees
- Scattered proton at 42.4 degrees

Detector System

HCAL - hadron calorimeter

- Reassembled from detector elements from the SBS HCAL
- 288 blocks, each 15.5 x 15.5 x 100 cm³
- iron/scintillator sandwich with wavelength shifting fiber readout

ECAL - electron calorimeter

- Reassembled from detector elements from the NPS calorimeter
- 1000 blocks, each 2 x 2 x 20 cm³
- PbWO₄ scintillator

Scintillator array

- Used for improved position resolution in front of HCAL
- Not used to form trigger
- 7200 blocks, each 3 x 3 x 10 cm³
- Lead shield in front (thickness to be optimized) to reduce photon load

Calorimeters reusing components

NPS electromagnetic calorimeter

- 1080 PBWO₄ scintillators, PMTs + bases
- will run in future NPS experiment

SBS hadronic calorimeter

- 288 iron/scintillator detectors,
 PMTs + bases
- Already in use with SBS

Scintillator Array

- Extruded plastic scintillator block

- 7200 blocks, each 3 x 3 x 10 cm³

Design matches scintillator array built for GEP

- 2400 elements, 0.5 x 4 x 50 cm³
- Already built, will run next year

• New detector, must be built for this experiment • Readout with wavelength-shifting fiber • Each fiber read by pixel on multi-anode PMT • Originally proposed for 2x2 cross-section, but 3x3 provides sufficient resolution

Scattering chamber

3.5 m target shift downstream from pivot due to space limitation on the SHMS side A standard cylindrical scattering chamber with <1cm window to pass 15° electrons and 45° protons is sufficient

ECAL and HCAL rates

Inelastic: $E_e > 4.5$ GeV rate is 220 kHz $E_e > 4.8$ GeV rate is 85 kHz $E_e > 5.0$ GeV rate is 18 kHz $E_e > 5.2$ GeV rate is 2.8 kHz

Triggering and Analysis

Grouping into "subsystems" for energy threshold and coincidence triggering • each polar column of detectors, overlapping with neighbors • sum amplitude with conservative coincidence timing window

- compare to conservative energy threshold
- trigger when complementary (ECAL and HCAL) subsystems are both above threshold

Electron subsystems

- 1000 PbWO₄ crystals
- 2x2x20 cm³
- 5x5 grouping for subsystem
- 200 overlapping subsystems

Proton subsystems

- 288 iron/scintillators
- 15.5x15.5x100 cm³
- 3x3 grouping for subsystem
- 96 overlapping subsystems

Rates and Precision

Beam and target: 60 uA on 10 cm LH₂ => luminosity is 1.6 x 10^{38} cm⁻²/s

Trigger (online)

- Elastic 37 kHz signal in full detector
- Inelastic (pion production) coincidence trigger rate ~10 kHz ullet
- Accidental coincidence rate < 0.2 kHz
 - ~60 kHz total singles rate in ECAL > 5 GeV energy threshold
 - ~1.2MHz total singles rate in HCAL > 50 MeV energy threshold
- Temporal coincidence cut 40ns
- ~50 kHz total coincidence trigger rate

Offline analysis

- Accepted elastic signal reduced to 14 kHz production statistics
- Inelastic (pion production) < 0.5%, accidentals < 1x10⁻⁵ due to higher E cut, angular precision

Beam polarization 85%

 $\rightarrow A_{PV} = -150 + / - 6.2 \text{ ppm}$

• clustering, scintillator array to improve geometric cuts, tighter acceptance and ECAL cut, 4ns timing

30 days runtime \longrightarrow Raw asymmetry statistical precision $\delta(A_{raw}) \sim 5$ ppm

Fast Counting DAQ

technologies. In particular, SOLID will face this challenge in measurement of PV-DIS, and this experiment will be an important testing ground for precise asymmetry measurements.

Concept very similar to the HPS DAQ, HPS 2019 Setup: used in 2019 or NPS DAQ:

JLab FADC250 for HCAL and ECAL readout Provides the pulse information for a fast, "deadtime-less" trigger

- Readout for fast counting is now very common challenge and enabled by new, and now common,

- One VXS crate will handle one sixth of ECAL + HCAL, also provide external trigger for ScintArray pipelineTDC readout
 - Expect ~50kHz total, ~250 Mb/s data rate, distributed over 6 separate crates

Error budget

quantity	value	contributed uncertainty		
Beam polarization	$85\% \pm 1.5\%$	1.8%		
Beam energy	$6.6 + / - 0.003 { m GeV}$	0.1%		
Scattering angle	$15.5^\circ\pm0.03^\circ$	0.4%		
Beam asymmetries	<100 nm,<10 ppm	0.2%		
Backgrounds	< 0.5%	0.5%		
$G_E^n/G_{ m Dipole}$	0.41 ± 0.04	0.6%		
$G_E^p/G_{ m Dipole}$	0.75 ± 0.02	0.5%		
G_{Mn}/G_{Dipole}	1.01 ± 0.02	1.7%		
$G_M^p/G_{ m Dipole}$	1.08 ± 0.01	0.9%		
$G_A^{Zp}/G_{ m Dipole}$	-0.15 ± 0.02	0.9%		
Total systema	3.0%			

There is also an uncertainty from radiative correction, is small except for a dominant "anapole" piece. If the anapole uncertainty is not improved, this would contribute at additional 4.1 ppm (2.7%) uncertainty

(Polarimetry precision better than 1% has been achieved for multiple experiments)

or 4.5 ppm

Statistical precision for A_{PV}: 6.2 ppm (4.1%)

Projected result $\delta A_{PV} = \pm 6.2 \text{ (stat)} \pm 4.5 \text{ (syst)}$

 $\delta (G_E^s + 3.1G_M^s) = \pm 0.013 \text{ (stat)} \pm 0.010 \text{ (syst)} = 0.016 \text{ (total)}$

An update of Fig 4 from the proposal

If $G_M^s = 0$, $\delta G_E^s \sim 0.016$, (about 34% of G_D) If $G_E^s = 0$, $\delta G_M^s \sim 0.0052$, (about 11% of G_D)

The proposed measurement is especially sensitive to G_{M^s}

The proposed error bar reaches the range of lattice predictions, and the empirically unknown range is much larger.

Kin.		beam,	time
#	Procedure	$\mu { m A}$	days
C1	Beam parameters	1-70	1
C2	Detector calibration	10	2/3
C3	Dummy target data	20	1/3
C4	Beam polarimetery	1 - 5	2
C5	Pion yield study	20	1
E1	$A_{\scriptscriptstyle PV}$ data taking	60	30
	Total requested time		35

- higher Q², motivated by interest in flavor decomposition of electromagnetic form factors
- form factor.
- inside the range from the simple extrapolation from previous data
- on GPDs
- We request PAC approval of 35 days of beam time (60 uA on 10 cm long LH2 target).

Summary

• 10+ years after the last sFF searches were performed, a new experiment is proposed for much

• Projected accuracy at 11% of the dipole value allows high sensitivity search for non-zero strange

• The proposed error bar is in the range possibly suggested by lattice predictions, and significantly

• These results will be crucial to support the interpretation of the nucleon form-factors as constraints

Backup slides

Strawman Budget

scattering chamber

ECAL/HCAL support

Scintillator array construction ~7200 elements

Scintillator array readout

Vacuum chamber Scattering chamb

ECAL support ECAL cooling HCAL support FADCs (exist for VTP, DAQ crates

Scint array maPM Scint array extrud Scint array suppo Lead shield for sc Scint Array TDC +

Total, a bit over

The most expensive components (calorimeter detectors) largely exist

r - large pipe+window	tbd
oer shift	tbd
	200k <i>tbd</i> 200k
HCAL/ECAL)	exists
+ CPUs + data links	mostly exists
ITs (125x64 channels)	250k
ded scint	50k
ort	100k
cint array	<i>tbd</i>
+ front end	250k
	\$1050k

Pion electro-production contribution

Pion production rate above offline ECAL threshold $\sim 3 \text{ kHz}$

Angular separation: 6° (at Δ peak) 2.8° (at π threshold)

Angular resolution $\sim 0.6^{\circ}$ (polar)

Proton cone around Δ recoil, projected to polar angle: RMS = 2° (so, 2.5 σ separation for Δ)

Fraction to elastic rate < 0.3%

Pion-production background rate calculation

Online:

Electron arm single rate for $E_{e'} > 5$ GeV is ~18 kHz

Offline:

electron arm single rate for E> 5.2 GeV is ~3 kHz high angular resolution excludes >99%

Accidental background coincidence calculation

Online:

Electron arm single rate for $E_{e'} > 5$ GeV is ~18 kHz : 18 Hz/detector, 450 Hz/subsystem Proton arm single rate 1.2 MHz : 36 kHz/subsystem Time window in the trigger 40 ns -> total accidental coincidence rate ~ 0.2 kHz

Offline:

Time window in analysis 4 ns Accidental rate is 0.02 Hz in high resolution part of solid angle of sub-system where elastic rate is 70 Hz.

Next reduction due to higher threshold in offline analysis: electron arm single rate for E> 5.2 GeV is 3 kHz-> extra factor of 5

Proton sub-system

Single pion photo-production contribution pion (ECAL) - proton (HCAL) coincidence

EPA: functions $N(\omega)$, different E

N

$$_{\to\pi^- p} = 1.7 \times 0.83 \times \left(\frac{10}{s \,[\text{GeV}^2]}\right)^7 (1-z)^{-5} (1+z)^{-4} \,(\text{nb/GeV}^2),$$

$$f_{\pi^{-p}} = \frac{d\sigma}{dt} \prod_{\pi^{-p}} \frac{p_{\pi^{-}}^2}{\pi} \Delta \Omega_{\pi^{-}} f_{\pi^{-p}} \left[\frac{\Delta E_{\gamma}}{E_{\gamma}} \frac{t_{rad}}{X_o} \mathcal{L}_{en} \right]$$

Near the end point the photon yield is going down \longrightarrow reduction in factor t_{rad}/X_0

 $f_{\pi-p}$ takes care of the cuts on angular correlation/resolution

Remaining single pion events < 0.2% of elastic rate

Use of radiator for single pion production estimate

Pion Photoproduction near photon endpoint dominates pion-proton coincidence Photoproduction will be increased by large factor (~4) using radiator This can be well estimated, provides a check of accepted factor of this background

6% radiator was used for several WACS experiments in Halls A and C

Background events from Al

- assumed 5 mils target cell windows, ~5% nucleon
- B/S < 0.1%
- a dummy target will be used to check accepted rate

• Fermi energy smears quasi-elastic scattering distribution, about 80x suppression

Coincidence Cuts

Online

- Elastic 37 kHz signal in full detector
 - 18 kHz total rate DIS in e-arm
 - 1.2 MHz (proton arm)
- 5x5(electron) & 3x3(proton) subsystem counters
- Temporal coincidence cut 40ns
- Energy cut 5GeV
- Accidental < 0.2 kHz

Offline

- Elastic 14.4 kHz signal
- use center of cluster to better define azimuth of each hit
 - e-arm select 3x1 subsystems hi-res area
 - p-arm 2x1 subsystems hi-res area
- reduce temporal coincident cut to 4ns
- sharpen geometric/angular cuts
- Energy cut 5.2GeV
- Ratio real/accidentals 1.6×10^{5}

NPS Calorimeter DAQ

NPS Trigger/Readout Operation:

- Each FADC digitized each crystal and reports integral and time to VTP for trigger processing.
- VTP performs 3x3 clustering (in both space and time).
- Channels on border of crates are shared using VTP optical connections
- When any 3x3 view of calorimeter > threshold L1 Trigger sent to TS
-) TS sends L1 accept back to all FADC250 and VTP modules.
- VTP looks back fixed amount of time to see which 3x3 views satisfied trigger and send corresponding 5x5 FADC250 channel mask to FADCs to readout channels centered on 3x3 trigger cluster
- 7) FADC250 wait for channel mask after L1 accept and readout raw waveforms with no zero suppression for the specified channels

JLab Fast Electronics FADC250 / VTP

JLab FADC250 for HCAL and ECAL readout Provides the input for a fast, "deadtime-less" trigger

VTP (VXS Trigger Processor) Performs the trigger logic computation

VXS/VME Crate

1	2	3	4	5	6	7	8	V 9	ME S 10	Slot i 11	num 12	ber 13	14	15	16	17	18	19	20	21	
CPU	u n u s e d	FADC250	FADC250	FADC250	FADC250	FADC250	FADC250	FADC250	FADC250	V T P	SD	FADC250	F A D C 2 5 0	F A D C 2 5 0	FADC250	F A D C 2 5 0	F A D C 2 5 0	u n s e d	u n u s e d	TI	
		Electron Calorimeter Inputs Proton Calorimeter Input																			

One VXS crate will handle one sector of ECAL + HCAL, also provide external trigger for ScintArray TDC readout

This six synchronized but independent systems will form the full DAQ

DAQ Diagram

Cooling for ECAL

Water-cooled copper plates, foam thermal insulator

other chiller (cooling separated

voltage dividers cooled with cooled air

Helicity-correlated Beam Asymmetries

Position differences (like angle, but angle ~10x smaller): APV roughly proportional to Q^3 , so sensitivity $\delta A / \delta \theta \sim 3 \delta \theta / \theta$

Assume very large (by today's standards) position difference of 200 nm, to be compared to 64cm radius of ECAL

200nm / 64 cm ~ 0.3 ppm, or 0.2%

Similarly, energy, assuming 200 nm in dispersive bpm (~1m dispersion) \rightarrow 0.2 ppm, or 0.15%

Azimuthal symmetry leads to excellent cancellation, so the net effects will be very small. Can be checked with regression

Charge asymmetry Using feedback, <10ppm easily achievable. 1% calibration \rightarrow 0.1ppm systematic, 0.06%

Scale of "acceptable" contributions

Quantity Beam energy 1 2 Scattering at $\operatorname{GEN}/G_{Dip}$ 3 GEP/G_{Dip} 4 GMN/G_{Dip} $\mathbf{5}$ G_A^{Zp}/G_{Dipo} 6

uncertainty to match the statistical $\delta(A_{PV})/A_{PV} \sim 4.1\%$ result

Į	Absolute	Relative
gy	$132 \mathrm{MeV}$	2.0%
ngle	$0.34 \deg$	2.2%
pole		65%
pole		21%
pole		5%
ole		72%

The uncertainties of the parameters needed for each contribution of systematic

EMFF accuracy at Q² ~2.5 GeV²

Most sensitive to G_M^p and G_M^n

M. Diehl and P. Kroll, 2013

but these have been well measured

EMFF accuracy at 2.5 GeV²

M. Diehl and P. Kroll, 2013

Electromagnetic Form-factors used for this calculation

1 20	
1.20	
1.00	
0.80	_
0.60	_
	ŀ
0.40	┝
0.00	ŀ
0.20	Γ
0.00	
	ŀ
-0.20	
1.00	L
0.80	
0.60	Ĺ
0.40	
0.20	
0.00	1
-0.20	
0.	U

Form Factor	Value at Q ² = 2.5 GeV ²
$\mu_p G_E{}^p / G_M{}^p$	0.69
$G_M{}^p/\left(\mu_pG_D\right)$	1.08
$\mu_nG_E{}^n\!/G_M{}^n$	0.41
$G_M{}^n/\left(\mu_nG_D\right)$	1.01

V. Punjabi, C.F. Perdrisat, M.K. Jones, E.J. Brash, and C.E. Carlson: The Structure of the Nucleon

The nucleon electromagnetic form factors

Axial Form Factor

K. Park et al. [CLAS Collaboration], Phys. Rev. C 85, 035208 (2012).

- Axial form factor parameterization $G_A^p = 0.15$ at Q²= 2.5 GeV²
 - C. Chen, C. S. Fischer, C. D. Roberts, and J. Segovia, Form factors of the nucleon axial current, Physics Letters B 815, 136150 (2021)
- Confirmed with pion photoproduction measurements
 - K. Park et al. [CLAS Collaboration], Phys. Rev. C 85, 035208 (2012). • (~15% interpretation uncertainty) • I.V. Anikin, V.M. Braun, and N. Offen, Phys.Rev.D 94 (2016) 3, 034011.
- How uncertain is this measurement because of it?
 - Axial term ~6% of APV
 - ~15% uncertainty, so estimate 1% relative uncertainty on the 4% statistical measurement

Why search at high Q2?

PARAMETER 	$IN \phi \rightarrow$	$\pi^0 e^+ e^-$ DECA	Y		
VALUE (GeV ⁻²)	EVTS	DOCUMENT ID		TECN	COMMENT
2.02 ± 0.11	9.5k	¹ ANASTASI	16 B	KLOE	1.02 $e^+e^- \rightarrow \pi^0 e^+e^-$

This combined phi-pi radius ~ 0.69 fm with a pi-0 radius of ~ 0.64 fm and a ϕ -meson radius of ~ 0.26 fm

Electromagnetic form factors

$$egin{aligned} F_i^p &= e_u F_i^u + \ F_i^n &= e_u F_i^d + \ &\int_0^1 \mathrm{d}x [s(x) + F_1^s(0) &= 0 \end{aligned}$$

 $+ e_d F_i^d + e_s F_i^s ,$ $+ e_d F_i^u + e_s F_i^s ,$

 $-\bar{s}(x)]=0$

 $F_2^s(0) = \mu_s$

$$\begin{aligned} A_{PV} &= -\frac{G_F Q^2}{4\pi\alpha\sqrt{2}} \cdot \left[(1 - 4\sin^2\theta_W) - \frac{\epsilon G_E^p G_E^n + \tau G_M^p G_M^n}{\epsilon (G_E^p)^2 + \tau (G_M^p)^2} - \frac{\epsilon G_E^p G_E^s + \tau G_M^p G_M^s}{\epsilon (G_E^p)^2 + \tau (G_M^p)^2} \right] \\ &+ \epsilon' (1 - 4\sin^2\theta_W) \frac{G_M^p G_A^{Zp}}{\epsilon (G_E^p)^2 + \tau (G_M^p)^2} \end{aligned}$$

 $A_{PV} = 150 \text{ ppm at } 2.5 \text{ GeV}^2 \text{ (for sFF} = 0)$

 A_{PV} = (-226 ppm) *[0.075 + 0.542 - 6.43*(G_M^s + 0.32 G_E^s) + 0.038] axial Q_w EMFF strange form-factors

In the context of a very large discrepancy from SAMPLE, the anapole radiative correction was investigated as a possible cause

$$\tilde{G}_{A}^{e}(Q^{2}) = \left[\tau_{3}g_{A}(1+R_{A}^{(T=1)}) + \frac{3F-D}{2}R_{A}^{(T=0)} + (1+R_{A}^{(0)})\Delta s\right]G_{A}^{D}(Q^{2})$$

The 1-quark and many-quark corrections to the axial charges in the MS renormalization scheme.

	$R_A^{(T=1)}$	$R_A^{(T=0)}$	$R_{A}^{(0)}$
1-quark	-0.172	-0.253	-0.551
Many-quark Total	-0.086(0.34) -0.258(0.34)	0.014(0.19) -0.239(0.20)	- -0.551

values from Shi-Lin Zhu, S.J. Puglia, Barry R. Holstein, M.J. Ramsey-Musolf, Phys. Rev. D 62 (2000) 033008.

Q² dependence was explored at that time - suggested that it may be significant, but hasn't been evaluated since, or to high Q^{2} .

(Here, I believe this F(Q²) multiplies only the many-quark $R_{\Delta}^{(T=1)}$ = -0.086 contribution.)

Anapole Moment

Suggests a coefficient on the axial term at $Q^2 = 0$: $(1 + R_A^{(T=1)}) = 0.74 \pm 0.34$ Without improvement, this would correspond to 4.1ppb, or 2.7% of A_{PV}

Additional radiative correction to Q_W

$$Q^p_W = (1 + \Delta
ho + \Delta_e) \left(1 - 4 \sin^2 heta_W(0) +
ight)$$

Here, $\prod_{\gamma Z}^{v}(0) = 0.0095 \pm 0.0005$ and $\prod_{\gamma Z}^{a}(0) = -0.0036 \pm 0.0004$ which together is about 1.33 ± 0.14 ppm (0.9 $\pm 0.1\%$)

Gamma-Z Box

 $\Delta_{e}^{\prime} + \Box_{WW} + \Box_{ZZ} + \Box_{\gamma Z}(0)$

For Qweak, added ~0.5% uncertainty

Caveat: this calculation is for forward direction. Off-forward expected to be greatly reduced (but this is also model dependent).

> Axial piece smaller, didn't receive as much recent attention/update, seems stable with energy

