

PR12-22-006:

Deeply Virtual Compton Scattering off the neutron with the Neutral Particle Spectrometer in Hall C

07/12/2022

nDVCS with NPS

2

- > Neutron DVCS (nDVCS) is the best and necessary reaction to probe flavor dependence of GPDs
- > Accurate cross section measurements are needed for high sensitivity results
- > Extensive program of DVCS measurements on proton targets approved at JLab12
- > No experiment yet proposed to measure the nDVCS cross sections at JLab12

(only 2 experiments for BSA in Hall B)

- 12 GeV kinematics and the high resolution of the NPS system offer several advantages over pioneer measurements at 6 GeV:
 - Better separation of nDVCS from coherent DVCS off deuteron, due to the larger values of momentum transfer t
 - Natural suppression of coherent DVCS off deuteron (sharp drop of *d* form factor)
 - Higher energy resolution of NPS wrt previous measurements using an PbF₂ calorimeter

Experimental setup

Measurement of the e N \rightarrow e' γ X reaction (N=p,n,d) using an LD2 target in Hall C

Analysis technique (impulse approximation):

$$D(e, e'\gamma)X = d(e, e'\gamma)d + n(e, e'\gamma)n + p(e, e'\gamma)p$$

Separated by missing mass
 $(\Delta M_X^2 = t(1 - M_N/M_d) \approx t/2)$

LH2 (approved experiment E12-13-010)

FACULTÉ DES SCIENCES

ORSAY

UNIVERSITE PARIS-SACLAY

W

High impact measurements to flavor separate GPDs one

%e(H,...)

%е(<u>́н</u>__)

%e(E ___)

u quark (HT)

d guark (HT)

u guark (NLO)

d guark (NLO)

-0.4

-0.3

t (GeV²)

-0.2

-0.4

Flavor separation of Compton Form Factors

3m(H___)

3m(<u>H</u>___)

3m(E___)

-0.3

t (GeV²)

-0.2

16

-10

0.2

0.1

0.3

-t [GeV²]

0.4

0.5

W Université de Paris

Cross section measurements from E08-205

Benali et al, Nature Phys. 16, 191 (2020)

Access in helicity-independent cross section

Approved proton DVCS E12-13-010

	· · · · ·										-						
x_B	0.2				0.36				0.5			0.6					
$Q^2 \left({ m GeV} ight)^2$		2.0		3.0		3.0		4	.0	5.5	3	.4	4.8		5.1		6.0
$E_b \; (\text{GeV})$	6.6	8.8	1	1	6.6	8.8	11	8.8	1	1	8.8	1	1	6.6	8.8	1	1
$k' \; (\text{GeV})$	1.3	3.5	5.7	3.0	2.2	4.4	6.6	2.9	5.1	2.9	5.2	7.4	5.9	2.1	4.3	6.5	5.7
$\theta_{\rm Calo}({\rm deg})$	6.3	9.2	10.6	6.3	11.7	14.7	16.2	10.3	12.4	7.9	20.2	21.7	16.6	13.8	17.8	19.8	17.2
D_{Calo} (m)	6		4	6		3		4	3	4				3			
$I_{\rm beam}$ (μA)	11	5	50	11		28		-50	28	-50				28			
$\sigma_{M_X^2}(\text{GeV}^2)$		0.1'	7	0.22	0.	13	0.12	0.	15	0.19	0.	09	0.11		0.	09	
$-t_{min}$ (GeV ²)		(0.04			0.16			0.17		0.	37	0.39		0.65		0.67
$-t_{min}/(2\sigma_{M_Y^2})$			0.1			0.6		0.	55	0.4	1	2	1.7		3.6		3.7
LH_2 Days	1	1	1	1	1	2	1	1	3	5	3	2	5	5	1	5	10
LD ₂ Days					1	2	1	1	3	5	3	2	5	5	1	5	10
								Thi	s Pro	posa	d: 44	day	s on	\mathbf{LD}_2			

Typical 6 GeV

kinematics

Previous 6 GeV experiment: $\sigma_{M_Y^2}$ =0.23 GeV² & $-t_{min}/(2 \sigma_{M_Y^2})$ =0.35

- 12 GeV \rightarrow higher $x_B \rightarrow$ higher t_{min}
- NPS: higher energy resolution \rightarrow smaller ($\sim \frac{1}{2}$) $\sigma_{M_X^2}$

 $\sim \times 2-12$ better nDVCS & dDVCS separation than previous 6 GeV experiment

xb=0.36 Q2=3.00 GeV² k=6.60 GeV t<-0.16 GeV² (integrated over t and ϕ)

- pDVCS and nDVCS weighted by DVCS cross section model KM15 by Kumericki & Mueller [1512.09014]
- dDVCS model by W. Cosyn & B. Pire [PRD98 (2018)], with GPDs from Kroll-Goloskokov [Eur.Phy. J A (2014)]

xb=0.60 Q2=5.10 GeV² k=11.00 GeV t<-0.65 GeV² (integrated over t and ϕ)

universite

W

DES SCIENCES

ORSAY

Projections: number of counts

- Beam time request such as to match \succ the beam time of the proton data (to statistically optimize the subtraction of the incoherent proton channel)
- Proton beam time request (E12-13- \geq 010) was driven by helicity-dependent cross sections, and such that systematic and statistical uncertainties are comparable (3-4%)

nDVCS with NPS

Impact on flavor dependence of CFFs

- Simultaneous fit of E12-13-010 (proton) and PR12-22-006 (neutron) projected data
- > Real and imaginary parts of CFFs H, \tilde{H} and E (u & d) as free parameters (nDVCS not sensitive to \tilde{E})

FACULTÉ DES SCIENCES

D'ORSAY

CNIS

UNIVERSITE PARIS-SACLAY W

Experimental equipment readiness

NPS - DVCS scaling & SIDIS Cross Sections

SHMS/HMS Cryo-target (PionFF, CaFe, x > 1 & EMC Effect, D(e,e'p))

NPS - Wide-Angle Compton Scattering: Cross Sections and Polarization

FY-2024

JLab experiment schedule (6/10/2022)

FY-2023

Experimental Hall C

- NPS (Neutral Particle Spectrometer) experiment readiness review passed on 2019
- Equipment (calorimeter and sweeping magnet) ready and being tested
- Installation in Hall C during Spring 2023
- NPS run (E12-13-010) scheduled from July 17 (2023) to Feb 15 (2024)

07/12/2022

FY-2022

	Experiment	PAC	Goal	Results				
6 GeV	E00-110	PAC18	1 st dedicated DVCS experiment at JLab	<u>PRL97 (2006)</u> , <u>PRC83 (2011)</u> , <u>PRC92</u> (2015)				
	E03-106	PAC24	1 st neutron DVCS experiment	<u>PRL99 (2007)</u>				
	E07-007	PAC31	DVCS Rosenbluth-like separation (proton)	PRL117 (2016), Nature Commun. 8 (2017)				
	E08-025	PAC33	DVCS Rosenbluth-like separation (neutron)	PRL118 (2017), Nature Physics 16 (2020)				
12 GeV	E12-06-114	PAC30+38+41+47	1 st 12 GeV experiment	<u>PRL127 (2021), PRL128 (2022)</u>				
	E12-13-010	PAC40	DVCS Rosenbluth-like separation (proton)	Scheduled 2023-2024				

- We propose to measure the DVCS cross section off quasi-free neutrons with an LD2 target & NPS in Hall C
- Accurate cross section measurements off neutron are a necessary complement to the approved proton DVCS program at JLab12
- Essential measurements for probing the flavor dependence of GPDs

Summary

- > 12GeV kinematics and NPS will significantly improve initial results at 6 GeV
- > Interleaved measurements with approved LH2 experiment (E12-13-010) will reduce systematics uncertainties
- \succ Exclusive π^0 electroproduction cross section off the neutron will also be measured

Université de Paris

DES SCIENCES

CNIS

Back-up

Transmittance

60

50E

FACULTE

DORSAY

Recovery in 2h

800

Dose rate in rad/h (0.01 Gy/h) as a function of calorimeter column wrt the beamline in the highest radiation setting

900

800

Impulse approximation: justification

CNIS UNIVERSITE DES SCIENCES PARIS-SACLAY D'ORSAY Université de Paris

Momentum distribution of spectator proton (blue) in the deuteron (Fermi momentum distribution) and the n-DVCS recoil neutron (red) in the proposed kinematics (x_B =0.36 setting). Overlap is less than 3%.

Source	pt-to-pt	scale
	(%)	(%)
Acceptance	0.4	1.0
Electron ID	< 0.1	< 0.1
Efficiency	0.5	1.0
Electron tracking efficiency	0.1	0.5
Integrated luminosity	0.5	2.0
Target thickness	0.2	0.5
Kinematics	0.4	< 0.1
Exclusivity	1.0	2.0
π^0 subtraction (for DVCS)	0.5	1.0
Radiative corrections	1.2	2.0
Total	1.8 - 1.9	3.8-3.9

Estimated systematic uncertainties for the proposed experiment based on previous Hall C and Hall A experiments

- Identify π^0 in data:
 - 2 photons.
 - Avoid calorimeter edges (energy leaks).
 - Invariant mass compatible with π^0 .
- For each π^0 : MC simulation $\pi^0 \rightarrow \gamma \gamma$
- Subtract from DVCS data:
 - · Normalized MC events with only 1 photon detected.
- →Advantage: $ep \rightarrow e'p'\pi^0$ cross section taken into account by using π^0 data.

07/12/2022

nDVCS with NPS

nDVCS with NPS

nDVCS in Hall B

Beam spin asymmetries

DVCS in Hall A at 12 GeV (E12-06-114)

PACULTÉ UNIVERSITE DES SCIENCES PARIS-SACLAY D'ORSAY

CNIS

Université de Paris

Constraints in all 4 CFFs (Re & Im parts)

High precision helicity-dependent & helicity-independent cross sections

nDVCS with NPS

Exclusivity

FACULTÉ
 DES SCIENCES
 D'ORSAY

FIG. 2: (color online). Missing mass squared for $H(e, e'\gamma)X$ events (stars) at $Q^2 = 2.3 \text{ GeV}^2$ and $-t \in [0.12, 0.4] \text{ GeV}^2$, integrated over the azimuthal angle of the photon $\phi_{\gamma\gamma}$. The solid histogram shows the data once the $H(e, e'\gamma)\gamma X'$ events have been subtracted. The other histograms are described in the text.

PRL97 (2006)

DVCS in Hall C

ALS UNIVERSITE DES SCIENCES PARIS-SACLAY D'ORSAY

Exclusive meson production

FACULTÉ DES SCIENCES D'ORSAY

CNIS

PARIS-SACLAY

Measurement	Hall	Notes
DVCS	A,B,C	B includes long. & trans. target
nDVCS	В	Unp. & long. pol. target
DVCS w/ e+	B, C	
TCS	A (Solid), B, C	
Excl. π^0	A,B,C	
Excl. π⁻	A (Solid), (B)	
Excl . φ, η	В	
L/T separation (K, π +)	С	
WACS (γ , π^0)	A, C	
Backwards π^0	С	