Target Single Spin Asymmetry in Semi-Inclusive Deep-Inelastic (e,e'π[±]) Reaction on a Transversely Polarized Proton Target

Vladimir Khachatryan Physics Department, Duke University

Vladimir Khachatryan: PAC50 Meeting, July 11-15 (2022), JLab

For E12-11-108 and SoLID Collaborations JLab PAC50, July 11-15, 2022

SoLID SIDIS setup with a transversely polarized NH₃ ("proton") target

Several results from the original proposal

Targe

GEM

Scint

E12-11-108: Single Spin Asymmetries on Transversely Polarized NH₃ (proton) @ 120 days **Rating A** Spokespersons: J.P. Chen, H. Gao (contact), V. Khachatryan, X.M. Li, Z.-E. Meziani

SIDIS: $e + p \rightarrow e' + \pi^{\pm} + X$

- ➢ Beam:
 - energy: 8.8 GeV and 11 GeV
 - current: 100 nA
 - polarization (not for SSA): 85%
 - polarimetry: < 3%
- \succ GEM: 6 tracking chambers
- > EM Calorimeter: Forward and Large angle
- SPD: Forward and Large angle
- \succ LGC: 2 m long
- \succ HGC: 1 m long

Vladimir Khachatryan: PAC50 Meeting, July 11-15 (2022), JLab

Updates after the approval of the original proposal

Summary

SoLID (SIDIS NH₃)

Several details on the E12-11-108 experiment

Some details on the SoLID SIDIS setup Several results from with a trans.-pol. NH₃ ("p") target the original proposal

- > Approved number of days: 94 + 26 = 120
- \geq 90 days requested for the beam on the trans.-pol. NH₃ target
 - 55 days at 11 GeV, 27.5 days at 8.8 GeV
 - including 7.5 days for dilution measurements, optics, and detector calibrations
- 4 days requested with a longitudinal target polarization to study the systematics of potential A_{III} contamination
- \geq 26 days of overhead time requested for regular target annealing
 - no need for an electron beam
 - can be shared with other regular activities such as detector maintenance
- > Major requirements: target spin flip, kaon contamination, sheet-of-flame background handling
- Expected DAQ rates: < 100 kHz</p>

Vladimir Khachatryan: PAC50 Meeting, July 11-15 (2022), JLab

Updates after the approval of the original proposal

NH₃ target characteristics and status

Some details on the SoLID SIDIS setup	Several results from	Undates after th
with a transpol. NH ₃ ("p") target	the original proposal	Opuales aller th

 \blacktriangleright Polarimetry: ~3%, spin flip: \leq 4 hours, polarization: ~70%, thickness: 2.826 cm

 \succ Polarized luminosity: 0.84 \cdot 10³⁵ cm⁻² sec⁻¹, total luminosity: 5.95 \cdot 10³⁵ cm⁻² sec⁻¹

- NH₃ target polarized at 1K and 5T
- > New superconducting solenoidal magnet with power-supply and cryogenic system
- Existing infrastructure from previous g2p/GEp experiments • 1 K refrigerator, vacuum chamber, microwaves
- New JLab NMR system for polarization measurements
- \succ New 12,000 m³/h pumping system

Vladimir Khachatryan: PAC50 Meeting, July 11-15 (2022), JLab

e approval of the original proposal Summary

SoLID requirement beyond transverse target: restore beam line chicane as in g2p/Gep experiment – folded in as capital equipment for outyears (FY24-FY26)

Sheet-of-flame background

Some details on the SoLID SIDIS setup Several results from Updates after the approval of the original proposal with a trans.-pol. NH₃ ("p") target the original proposal

- > High-rate particles form a sheet-of-flame type background, due to the large magnetic field in T direction
- Handle the SOF background properly to avoid damage to the entire SoLID apparatus
 - turn off the high voltage
- Determine the total trigger rate by using the combined trigger response.
 - from the forward-angle EC + LGC + SPD
 - from the large-angle EC + SPD

 \succ Current expected DAQ rate estimated to be ~ 79 kHz, less than required 100 kHz threshold

Collins SSA for π^+/π^- (original projections)

Some details on the SoLID SIDIS setup with a trans.-pol. NH₃ ("p") target

Several results from the original proposal

Updates after the approval of the original proposal

> SoLID SIDIS projections in a typical z and Q² bin for the $\pi + \pi^2$ Collins SSA measurements as a function of x, with different ranges of the hadron P_T labeled

Vladimir Khachatryan: PAC50 Meeting, July 11-15 (2022), JLab

Pretzelosity and Sivers SSAs for π + (original projections)

Some details on the SoLID SIDIS setup Several results from with a trans.-pol. NH₃ ("p") target the original proposal

 \triangleright SoLID SIDIS projections in a typical z and Q² bin for the π + Pretzelosity and π + Sivers SSA measurements as a function of x, with different ranges of the hadron P_T labeled

Vladimir Khachatryan: PAC50 Meeting, July 11-15 (2022), JLab

Updates after the approval of the original proposal

Transverse SSA projections: Complementarity to EIC

Some details on the SoLID SIDIS setup Several results from with a trans.-pol. NH₃ ("p") target the original proposal

- > SoLID SIDIS projections of A_{UT} in various 4-D bins at 11 / 8.8 GeV beam energies
- > Projections at EIC kinematics for the same observable at 29 GeV center-of-mass energy
- \succ SSA scale and uncertainties shown on the right-side axis of the right two figures
- \succ SoLID and EIC projections synergistic towards each other, by covering different x and Q² ranges

Vladimir Khachatryan: PAC50 Meeting, July 11-15 (2022), JLab

Updates after the approval of the original proposal

Summary

8

Transversity TMD projections (combined with the SoLID "neutron" results)

Some details on the SoLID SIDIS setup Several results from the original proposal with a trans.-pol. NH₃ ("p") target

- > Top figure: impact on the *u* and *d* quarks' **Transversity** TMD extractions by the SoLID SIDIS program
- Wide light-shaded uncertainty bands: our current knowledge coming from the global analysis of the World data
- Narrow dark-shaded uncertainty bands: SoLID projections
- \succ World: SIDIS data from COMPASS / HERMES, and e⁺e⁻ annihilation data from BELLE / BABAR / BESIII
- > Bottom figure: uncertainty improvement manifested as a ratio between the World uncertainty band and the projected uncertainty band by SoLID
- Monte Carlo method applied; the results obtained at the scale of $Q^2 = 2.4 \text{ GeV}^2$

Updates after the approval of the original proposal

Transversity TMD projections (combined with the SoLID "neutron" results)

Some details on the SoLID SIDIS setup with a trans.-pol. NH₃ ("p") target

Several results from the original proposal

2.0

1.5

1.0

0.5

 $-h_1^d(x)/h_1^u(x)$

- Ratio of the SoLID-extracted d and u quarks' Transversity (red area) compared to that from the World data (gray area)
- \blacktriangleright Result obtained at the scale of Q² = 2.4 GeV² as in the figures of the previous slide
- \succ Region of x from 0.05 up to 0.6 measured by SoLID
- World data keeps changing

World data from the SoLID preCDR document as of 2019 https://solid.jlab.org/experiments.html

Vladimir Khachatryan: PAC50 Meeting, July 11-15 (2022), JLab

Updates after the approval of the original proposal

Tensor Charge projections (combined with the SoLID "neutron" results)

Some details on the SoLID SIDIS setup Several results from with a trans.-pol. NH₃ ("p") target the original proposal

Tensor charge g_T :

$$g_T^q = \int_0^1 \left[h_1^q(x) - h_1^{\overline{q}}(x)\right] dx$$

World data

SoLID projections in the figure and table from both ³He / NH₃ targets at 11 / 8.8 GeV beams

Statistical and systematic uncertainties included

g _T flavor separation	World data
u/d value	0.548 / -0.382
u/d error	0.112 / 0.177

Vladimir Khachatryan: PAC50 Meeting, July 11-15 (2022), JLab

Updates after the approval of the original proposal

Relation of Tensor Charge to Electric Diploe Moment

Some details on the SoLID SIDIS setup with a trans.-pol. NH₃ ("p") target

Several results from the original proposal

Updates after the approval of the original proposal

- \succ Tensor Charge connected to neutron and proton electric dipole moments (EDMs)
 - giving us a unique opportunity to test the Standard Model
 - search for new physics beyond the Standard Model

 $d_n = g_T^d d_u + g_T^u d_d + g_T^s d_s$

- \succ Use the current sensitivity of the neutron/proton EDM experiments and the existing precision of Tensor Charge extractions based on SoLID projections: H. Gao, T. Liu and Z. Zhao, PRD 97, 074018 (2018); Z. Ye et. al., PLB 767, 91 (2017)
 - upper limit on u quark EDM is 1.27×10⁻²⁴ e⋅cm
 - upper limit on d quark EDM is 1.17×10⁻²⁴ e·cm
 - both EDMs determined at the scale of 4 GeV²
 - estimated new physics scale probed by the current quark EDM limit to be about 1 TeV

Future precise measurements of Tensor Charge and the nucleon EDM

- reduce the upper limit on quark EDMs by about three orders of magnitude to the level of $\sim 10^{-27} \, e \, cm$
- estimated new physics scale probed by the improved quark EDM limit to be about 30-40 TeV, beyond LHC energy scope

Vladimir Khachatryan: PAC50 Meeting, July 11-15 (2022), JLab

Pretzelosity TMD projections (combined with the SoLID "neutron" results)

Vladimir Khachatryan: PAC50 Meeting, July 11-15 (2022), JLab

Updates after the approval of the original proposal

Summary

13

 $L_{z}^{q} = -\int \mathrm{d}x \mathrm{d}^{2}\mathbf{k}_{\perp} \frac{\mathbf{k}_{\perp}^{2}}{2M^{2}} h_{1T}^{\perp q}(x,k_{\perp}) = -\int \mathrm{d}x h_{1T}^{\perp(1)q}(x)$

Relation of the Pretzelosity TMD distribution

Black points from Lefky and Prokudin; blue points from SoLID; the results obtained at $Q^2 = 2.4 \text{ GeV}^2$; integrated over the kinematic region of 0 < x < 1

Sivers TMD projections (combined with the SoLID "neutron" results)

Some details on the SoLID SIDIS setup with a trans.-pol. NH₃ ("p") target

Several results from the original proposal

- > Top figure: impact on the *u* and *d* quarks' **Sivers** TMD extractions by the SoLID SIDIS program
- Wide light-shaded uncertainty bands: our current knowledge coming from the global analysis of the World data
- Narrow dark-shaded uncertainty bands: SoLID projections
- ➢ World: SIDIS data from COMPASS / HERMES, and e⁺e⁻ annihilation data from BELLE / BABAR / BESIII
- Bottom figure: uncertainty improvement manifested as a ratio between the World uncertainty band and the projected uncertainty band by SoLID
- > Monte Carlo method applied; the results obtained at $Q^2 = 2.4 \text{ GeV}^2$

Vladimir Khachatryan: PAC50 Meeting, July 11-15 (2022), JLab

Updates after the approval of the original proposal

Sivers TMD projections (combined with the SoLID "neutron" results)

Updates after the approval of the original proposal

$$= f_1^q(x, k_\perp) - f_{1T}^{\perp q}(x, k_\perp) \frac{\widehat{\mathbf{P}} \times \mathbf{k}_\perp \cdot \mathbf{S}}{M}$$
$$= -M \int dx f_{1T}^{\perp(1)}(x) (\mathbf{S} \times \widehat{\mathbf{P}})$$

$$\langle k_{\perp} \rangle^u \qquad \langle k_{\perp} \rangle^d$$

- $96^{+60}_{-28} \text{ MeV} -113^{+45}_{-51} \text{ MeV}$
- $96^{+2.8}_{-2.4} \text{ MeV} -113^{+1.3}_{-1.7} \text{ MeV}$
- Parametrization by M. Anselmino *et al.*, EPJ A 39, 89 (2009): based on HERMES and COMPASS pion and kaon production data
- SoLID projections with transversely polarized "neutron" and "proton" targets

Vladimir Khachatryan: PAC50 Meeting, July 11-15 (2022), JLab

SIDIS event generator on radiative corrections

Some details on the SoLID SIDIS setup Several results from Updates after the approval of the original proposal with a trans.-pol. NH₃ ("p") target the original proposal

- Consider QED radiative corrections (RCs) to reliably extract TMDs from experimental data
- > Momentum transfer and azimuthal angular modulation between leptonic and hadronic planes altered by radiative photons
- Non-trivial but traditional approach to SIDIS RCs: I. Akushevich and A. Ilychev, PRD100, (2019) • Lowest order RCs to SIDIS computed analytically beyond ultra-relativistic approximation
- Respective Monte-Carlo event generator created: <u>https://github.com/duanebyer/sidis</u>
 - Generates events for SIDIS six-fold cross sections computation
 - All eighteen SIDIS structure functions implemented in Gaussian and Wandzura-Wilczek type approximations: S. Bastami et. al., JHEP06, 007 (2019)
 - More fine tuning on the generator for running fully in the SoLID framework
- Examples of extracted Collins and Sivers asymmetries shown on the next slide

Vladimir Khachatryan: PAC50 Meeting, July 11-15 (2022), JLab

SIDIS event generator on radiative corrections

Some details on the SoLID SIDIS setup with a trans.-pol. NH₃ ("p") target

Several results from the original proposal

Vladimir Khachatryan: PAC50 Meeting, July 11-15 (2022), JLab

Updates after the approval of the original proposal

E12-11-108 -- related run group experiments

Some details on the SoLID SIDIS setup with a trans.-pol. NH₃ ("p") target

Several results from the original proposal

Updates after the approval of the original proposal Summary

Approved two Run Group Experiments

- 1. SIDIS in Kaon Production with Transversely Polarized ³He and NH₃ targets
 - Measurements of K^{\pm} production in SIDIS using both transversely polarized ³He and NH₃ targets, to extract the K[±] Collins, Sivers and other TMD asymmetries
 - Will provide input data to determine the u, d and sea quarks' TMDs
 - Will be running in parallel with the experiments E12-10-006 and E12-11-108
- 2. A_{v} : Target Single Spin Asymmetry Measurements in the Inclusive Deep-Inelastic Reaction on Transversely Polarized Neutron (3 He) and Proton (NH₃) Targets using the SoLID Spectrometer
 - Single spin asymmetry, A_{v} , to be obtained by scattering of unpolarized electrons from a transversely polarized targets in the DIS region
 - Extract the two-photon exchange contribution in the absence of the typically dominant Born scattering contribution by measuring the azimuthal dependence of this asymmetry
 - Will be running in parallel with the experiments E12-10-006 and E12-11-108

Vladimir Khachatryan: PAC50 Meeting, July 11-15 (2022), JLab

Summary

Some details on the SoLID SIDIS setup	Several results from	Undatos aftor th
with a transpol. NH ₃ ("p") target	the original proposal	Opuales aller th

> SoLID SIDIS program will be *unique* (valence quark region with high precision)

- Exploring the 3-D tomography of the nucleon in momentum space
- Complementing the research at other key facilities, e.g., COMPASS-II, EIC (see Backups)
- \succ Impactful results to be obtained in the first three years of SoLID operations with ³He and NH₃ trans.-pol. targets
 - Measuring Transversity, Pretzelocity, and Sivers TMDs
 - Confronting the Lattice QCD predictions (e.g., tensor charge)
- > No less impactful results to be obtained with the SoLID SIDIS run group experiments based on using both targets
 - Enhancing our knowledge on light and sea quark TMD distributions inside the nucleon, as well as having significant impact for discrimination among various parton model predictions for nucleon intermediate states
- \succ We have more confidence in delivering this Science after 10 years of experience and passing important reviews from the time of the original proton target proposal's approval

Thank You !

Vladimir Khachatryan: PAC50 Meeting, July 11-15 (2022), JLab

e approval of the original proposal Summary

Vladimir Khachatryan: PAC50 Meeting, July 11-15 (2022), JLab

SoLID magnet

- SoLID's magnet is the CLEO-II magnet
 - solenoidal magnet with power-supply and cryogenic system
 - natural choice for SoLID that operates at high luminosity and has large acceptance
 - still requires some modifications to its design for use in the SoLID experiments
 - JLab-funded (Phase 1) test plan: static tests and a low current cold test to confirm the magnet condition \bullet
 - SoLID-funded (Phase 2) test plan: a full current test to be conducted after installation in Hall A
- Uniform axial central field of 1.5 T
- \succ Large inner space with a coil of 3.1 m diameter
- \succ Coil length of 3.5 m
- \succ Magnetic field uniformity ± 0.2 %

Vladimir Khachatryan: PAC50 Meeting, July 11-15 (2022), JLab

CLEO-II magnet at JLab

Systematic uncertainty sources

- Systematic uncertainty sources and how we address them:
 - *Raw asymmetry*: expect to control the syst. uncertainties corresponding to detector efficiencies (time-dependent part) by monitoring the single e^{-} , π^{+} , π^{-} rates
 - Target polarization: knowledge of the target pol. at 3% level \rightarrow translates to a 3% rel. syst. uncertainty of the SSA data
 - Random coincidence: obtained from the signal to noise ratio and background within 6 nsec
 - Diffractive meson: pion contribution from diffractive production decay estimated based on HERMES tuned Pythia at SoLID SIDIS kinematics
 - *Radiative correction*: the effect is simulated with the HAPRAD program
 - Detector resolution: estimated based on the track fitting studies
 - *Dilution effects*: estimated based on target materials and characteristics
- \blacktriangleright Average statistical uncertainties on the separated SSAs: ~ 1.4 · 10⁻² (absolute) for 674 bins

Vladimir Khachatryan: PAC50 Meeting, July 11-15 (2022), JLab

Systematic uncertainty budget

- \succ The budget for the absolute and relative systematic uncertainties of the π +/ π ⁻ Collins and Sivers SSAs
- The uncertainty sources described in the previous slide

Source (Type): NH ₃ (E12-11-108)	Collins π ⁺	Collins π ⁻	Sivers π ⁺	Sivers π⁻
Raw asymmetry (Abs.) Detector resolution (Abs.)	6.5 ×10 ⁻⁴ < 10 ⁻⁴			
Target polarization (Rel.)	3% + 0.5%	3% + 0.5%	3% + 0.5%	3% + 0.5%
Random coincidence (Rel.)	0.2%	0.2%	0.2%	0.2%
Dilution (Rel.)	5%	5%	5%	5%
Diffractive meson (Rel.)	3%	2%	3%	2%
Radiative corrections (Rel.)	2%	2%	3%	3%
Total (Abs.) Total (Rel.)	6.5 ×10 ⁻⁴ 6.9%	6.5 ×10 ⁻⁴ 6.5%	6.5 ×10 ⁻⁴ 7.2%	6.5 ×10 ⁻⁴ 6.9%

Vladimir Khachatryan: PAC50 Meeting, July 11-15 (2022), JLab

Other projections (combined with the "neutron" results)

> SoLID projections using Baseline vs. Enhanced configurations (for Transversity and Sivers TMDs)

Vladimir Khachatryan: PAC50 Meeting, July 11-15 (2022), JLab

Measuring TPEX via Target Single Spin Asymmetry in DIS, proton & neutron, T. Averett, W&M

Vladimir Khachatryan: PAC50 Meeting, July 11-15 (2022), JLab

$A_{UT} = rac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} = A_y \sin \theta$	ø s
	-
BigBite sys.	Average of
BigBite stat. (W>2 GeV) — Mult. quarks Sivers (Metz)	– W>2 GeV – Points
1 O BigBite stat. (W<2 GeV) — Mult. quarks KQVY (Metz)	
cich <i>et al., PRL</i> 113 (2014) 022502 W (GeV	3)

Primary issue: Neutron results agree with theory using Sivers input; disagree using Drell-Yan ($q \gamma q$) input (KQVY)

Metz et al., PRD 86 (2012) 094039, "... it is of crucial importance to eventually settle what causes these asymmetries."

Transversity TMD projections (combined with the "neutron" results)

- Left three plots: the ratio of the Transversity error to its central value for u, d, and u d as a function of x \succ
- Right two plots: The ratio of the error of the Collins structure function to its central value as a function of Q²

Nobuo Sato, Private communication; Gamberg, et al., PLB 816, 136255 (2021)

- $\langle \mathbf{P}, \mathbf{S} | \overline{\psi}_q i \sigma^{\mu\nu} \psi_q | \mathbf{P}, \mathbf{S} \rangle =$ $g_T^q = \int_0^1 \left[h_1^q(x) - h_1^{\overline{q}}(x) \right] dx$
- Extraction of the tensor charges for both EIC and SoLID projection data
- Figure from Gamberg, *et al.*, PLB 816, 136255 (2021)

Vladimir Khachatryan: PAC50 Meeting, July 11-15 (2022), JLab

$$g_T^q \overline{u}(\mathbf{P},\mathbf{S}) i \sigma^{\mu\nu} u(\mathbf{P},\mathbf{S})$$

Transversity TMD projections (combined with the "neutron" results)

- SoLID and COMPASS-II measurements to be complementary
- Assume no uncertainty due to Q² evolution and knowledge of the Collins functions
- Generate values for *d* quark transversity, assuming a parametric function that is used by SoLID
- Compare the generated SoLID data with two other functions used by COMPASS-II

The figure is from d-Quark Transversity and Proton Radius: Addendum to the COMPASS-II Proposal

Vladimir Khachatryan: PAC50 Meeting, July 11-15 (2022), JLab

COMPASS-II two functions

COMPASS-II square projection points overlayed on SoLID red curve in the region 0.008 < x < 0.21

- At large x, SoLID will provide very accurate
- At smaller x, the COMPASS-II data will provide a contribution to g_T with an uncertainty of ± 0.044
- Without having COMPASS-II data, tensor charge evaluation from only SoLID data will be affected by the error of the integration between 0 and 0.1, and the result will anyhow be model-dependent

