PVDIS Jeopardy Update

Paul Souder

Syracuse University

1

A_{PV} with deuterium

- 1. Search for BSM physics at a high energy scale.
- 2. Search for CSV at the quark level
- 3. Search for quark-quark higher twist effects

נס א_{en} —א_{eq}1

A_{PV} with the Proton

- 1. Help determine d/u PDF's
- 2. Insight into nuclear effects at high x

PVDIS for eD Scattering

At high x, A_{iso} becomes independent of pdfs, x & W, with well-defined SM prediction for Q² and y

SM Effective Field Theory (SMEFT) and LHC Data

$$\mathcal{L} = \sum_{d} \sum_{ij} \frac{C_d^{ij}}{\Lambda^{d-4}} \mathcal{O}_d^{ij}$$
$$\mathcal{O}_d^{ij} = \overline{e}_i \gamma_\mu e_i \overline{f}_j \gamma^\mu f_j$$
$$e_{L/R} = \frac{1}{2} (1 \mp \gamma^5) \psi_e$$
$$\mathcal{O}_d^{ij} = LL_f, \ LR_f, \ RL_f, \ RR_f$$

Goal: Measure each C_d^{ij} as precisely as possible (Nobody really knows where the new physics is.)

SoLID and LHC data are complementary

New Drell-Yan LHC data measures a combination of parity conserving and parity violating couplings.

Figure courtesy of Frank Petriello...

Dark Boson Z_d and other Sub-TeV BSM Models

Thomas, A. W. and Wang, X. G. arXiv hep-ph ADP-22-19/T1190 (2022), author = Thomas, A. W. and Wang, X. G. and Williams, A. G. arXiv hep-ph ADP-22-4/T1175 (2022)

> Constraints of new W mass versus PV Thomas and Wang, arXiv: 2205.01911 0.35 PV fit 0.30 $-- M_W$ fit ---- EWPO limit DIS-1 0.25 – DIS-2 0.20 ŝ 0.15 0.10 0.0 0.00 100 120 140 160 180 200 80 $m_{A_D}(\text{GeV})$

PVDIS with the Proton

PVDIS is complementary to the rest of the Jlab d/u program. *Only PVDIS has no nuclear effects*

The MARATHON Data on d/u has different interpretations. Hence as many targets as possible should be studied: PVDIS, BONUS (D), and MARATHON

Phys.Rev.Lett. 127 (2021) 24, 242001 *Phys.Rev.Lett.* 128 (2022) 13, 132003

SoLID PVDIS Apparatus Described in Pre-CDR

Achieving High Luminosity

- 50 μ A beam current.
- 40 cm LD₂ target
- ~40% azimuthal coverage with baffles which provide curved channels that block positive and neutral background particles
- Azimuthally symmetric.
- High-rate GEM tracking Chambers

Magnet from CLEO experiment at Cornell is at JLab. Cold test is expected to be completed by October.

Baffles

GEM Chambers

Summary of Uncertainties and Beam Request

Experimental Uncertainty Budget

Total	0.6			
Polarimetry	0.4			
Q ²	0.2			
Radiative Corrections			0.2	
Event reconstruction			0.2	
Statistics			0.3	
Energy(GeV) Days(LD2) Days(LH2)	4.4 18 9	6.6 60 -	11 120 90	Test 27 14

169 Days were Approved. Based on the urgency of the science and successful Pre-CDR design, we now request the full 338 days.

Fine points

The formula

$$a^{P}(x) \approx \frac{u(x) + 0.91d(x)}{u(x) + 0.25d(x)}$$

is at leading order (LO) in QCD. Extracting d/u requires higher order corrections, which are performed by PDF groups. Comparisons of relative errors between BONUS, Marathon, and SoLID is done at LO.

Qweak, APV, and P2 do not provide constraints in the vertical direction. Only PVDIS experiments (SLAC, Jlab 6 GeV, and Solid) constrain the C_2 's

247 Members62 Institutions13 countries

P. A. Souder: Contact X. Zheng: Co-spokesperson P. Reimer: Co-spokesperson

Backup

Limited data for x>0.25 New SeaQuest data for x<0.5 coming soon If strange sea < light quark sea, strange contribution is small PDF fits less useful because of extrapolation errors PDF contribution may be < 0.3%

Anticipated improvements on light antiquarks from SeaQuest

Impact of PDF Errors for Various Fits

Red lines are seq quark uncertainties: At x~0.25, fits similar At x=0.7, fits differ by more than two orders of magnitude!

FIG. 6. A comparison of the theoretical asymmetry vs. all uncertainties. All Uncertainties consists of statistical, systematic, and PDF errors. The x-axis is the bin labels in Number. Bin number is a geometrical coordinate of kinematic variables (x, Q^2) . The PDF uncertainties were obtained with CT18NLO (90% C.L., left) and JAM22 (right) PDF sets.

FIG. 7. Comparison of the theoretical asymmetry vs. all uncertainties. PDF uncertainties from NNPDF31NLO (left) and NNPDF40NLO (right).

Definition of bins

Formula for internal corrections

$$\mathrm{d}\sigma^{\mathrm{obs}}(\boldsymbol{P},\boldsymbol{q}) = \int \frac{d^3k}{2k^0} \sum_n R_n(\boldsymbol{I},\boldsymbol{I}',\boldsymbol{k}) \,\mathrm{d}\hat{\sigma}_n^{(0)}(\boldsymbol{P},\boldsymbol{q}-\boldsymbol{k})$$

Hadronic Physics: Charge Symmetry Violation

$$u^{p}(x) \stackrel{?}{=} d^{n}(x) \implies \delta u(x) \equiv u^{p}(x) - d^{n}(x)$$
$$d^{p}(x) \stackrel{?}{=} u^{n}(x) \implies \delta d(x) \equiv d^{p}(x) - u^{n}(x)$$
$$\downarrow$$
$$R_{CSV} = \frac{\delta A_{PV}}{A_{PV}} \approx 0.28 \frac{\delta u(x) - \delta d(x)}{u(x) + d(x)}$$
For A_{PV} in electron-²H DIS

Additional contribution to NuTeV anomaly?

"The paper on PVDIS and the EMC effect highlights a way -- perhaps the best way -- to access the flavor dependence of the EMC effect using PVDIS." Ian Cloet

Unique Higher Twist Contribution

The observation of Higher Twist in PV-DIS would be exciting direct evidence for diquarks

following the approach of Bjorken, PRD 18, 3239 (78), Wolfenstein, NPB146, 477 (78)

> Isospin decomposition before using PDF's

$$A_{PV} = \frac{G_F Q^2}{\sqrt{2\pi\alpha}} \begin{bmatrix} a(x) + f(y)b(x) \\ f(y)b(x) \end{bmatrix}$$

$$egin{aligned} V_{\mu} &= \left(\overline{u}\gamma_{\mu}u - \overline{d}\gamma_{\mu}d
ight) \Leftrightarrow S_{\mu} &= \left(\overline{u}\gamma_{\mu}u + \overline{d}\gamma_{\mu}d
ight) \ &\langle VV
angle &= l_{\mu
u} \int \langle D|V_{\mu}(x)V_{
u}(0)|D
angle e^{iqx}d^{4}x \end{aligned}$$

$$\delta = \frac{\langle VV \rangle - \langle SS \rangle}{\langle VV \rangle + \langle SS \rangle}$$

$$a(x) \propto rac{F_1^{\gamma Z}}{F_1^{\gamma}} \propto 1 - 0.3 \delta$$

Higher-Twist valence quark-quark correlation

Zero in quark-parton model

 $< VV > - < SS > = < (V - S)(V + S) > \propto l_{\nu\mu} \int < D |\bar{u}(x)\gamma_{\mu}u(x)\bar{d}(0)\gamma_{\nu}d(0)|D > eiqxd^{4}x$

(c) type diagram is the only operator that can contribute to a(x) higher twist: theoretically very interesting!

 $\sigma_{\rm L}$ contributions cancel

See Mantry et al., PRC 82 065205 (2010), Belitski et al., PRD (2011) 84 014010

Untangling the Physics

Kinematic dependence of physics topics:

	X	Y	\mathbf{Q}^2
New Physics	none	yes	small
\mathbf{CSV}	yes	small	small
Higher Twist	large?	no	large

$$A_{\text{Meas.}} = A_{\text{SM}} \left[1 + \frac{\beta_{\text{HT}}}{(1-x)^3 Q^2} + \beta_{\text{CSV}} x^2 \right]$$

	A _{SM}	β _{HT}	β _{csv}
A _{SM}	1	0.18	-0.67
eta_{HT}	0.18	1	-0.81
$\beta_{\rm CSV}$	-0.67	-0.81	1

SoLID DOE Science Review

With this precision, SoLID makes a unique contribution to the SMEFT program.

Improvement in couplings

Improvement in energy reach for electron-nucleon couplings

PVES Lagrangian and PVDIS for eD Scattering

$$\mathcal{L}_{\rm NC}^{ef} = \frac{1}{2v^2} \left(\overline{e} \gamma^{\mu} \gamma^5 e \sum_{q=u,d} g_{AV}^{eq} \overline{q} \gamma_{\mu} q + \overline{e} \gamma^{\mu} e \sum_{q=u,d} g_{VA}^{eq} \overline{q} \gamma_{\mu} \gamma^5 q \right)$$

$$\begin{split} g_{AV}^{eu} &= C_{1u} = -\frac{1}{2} + \frac{4}{3} \sin^2 \theta_W; \ g_{AV}^{ed} = C_{1d} = \frac{1}{2} - \frac{2}{3} \sin^2 \theta_W & \text{Tree only} \\ g_{VA}^{eu} &= C_{2u} = g_{VA}^{ed} = -C_{2d} = \frac{1}{2} - 2 \sin^2 \theta_W & \text{C}_{ij} = \text{C}_{ij} \overset{\text{SM}}{\text{-}} + \text{C}_{ij} \overset{\text{BSM}}{\text{-}} \\ A_{LR}^{\text{DIS}} &\approx -\frac{3}{20\pi\alpha(Q)} \frac{Q^2}{v^2} \left[(2g_{AV}^{eu} - g_{AV}^{ed}) + (2g_{VA}^{eu} - g_{VA}^{ed}) \frac{1 - (1 - y)^2}{1 + (1 - y)^2} \right] & \text{Renormalized} \end{split}$$

At high x, A^{DIS} becomes approximately independent of pdfs, x & W, with welldefined SM prediction for Q² and y

PVES Lagrangian

$$\mathcal{L}^{PV} = \frac{G_F}{\sqrt{2}} [\bar{e}\gamma^{\mu}\gamma_5 e(C_{1u}\bar{u}\gamma_{\mu}u + C_{1d}\bar{d}\gamma_{\mu}d) + \bar{e}\gamma^{\mu}e(C_{2u}\bar{u}\gamma_{\mu}\gamma_5u + C_{2d}\bar{d}\gamma_{\mu}\gamma_5d) + \bar{e}\gamma^{\mu}e(C_{2u}\bar{u}\gamma_{\mu}\gamma_5u + C_{2d}\bar{d}\gamma_{\mu}\gamma_5d) + C_{1u} = -\frac{1}{2} + \frac{4}{3}\sin^2\theta_W \approx -0.19$$

$$C_{2u} = -\frac{1}{2} + 2 \sin^2 \theta_W \approx -0.04$$

$$C_{2d} = \frac{1}{2} - 2 \sin^2 \theta_W \approx 0.04$$

SMEFT: C_{ii}^{BSM}: are linear combinations of the C^{ij}₆ $\mathcal{L} = \sum_{d} \sum_{ij} \frac{C_d^{ij}}{\Lambda^{4-d}} \mathcal{O}_d^{ij}$ $\mathcal{O}_d^{ij} = \overline{e}_i \gamma_\mu e_i \overline{f}_j \gamma^\mu f_j$ $e_{L/R} = \frac{1}{2} (1 \mp \gamma^5) \psi_e$ $\mathcal{O}_d^{ij} = LL_f, \ LR_f, \ RL_f, \ RR_f$

SMEFT: Useful for Global analysis.

Projected statistics

Precision Polarimetry: δ*Pb*/*P_b*~0.4%

- Method I: Compton Polarimeter:
 - Operates at full beam intensity.
 - Operates simultaneously with the PVES experiment.
- Method II: Moller Polarimeter:
 - Independent systematics.
 - Operates at low beam current.
 - Invasive measurement.
- Built on extensive experience with PVES experiments in both Hall A and Hall C.
- Compton capital upgrade (lasers, new electron detector).
- Commissioning will occur during the MOLLER experiment.
- An upgrade for the Moller polarimeter is part of the MOLLER MIE.

BSM Physics and the EIC

Very large range in x, particularly low x. Little data above x=0.4. No CSV test

https://arxiv.org/abs/2204.07557)

All of the SoLID data is at large y and sensitive to C₂; about 25% of the EIC data is at large y. EIC emphasizes new structure functions for P and D data.

SoLID Apparatus for PVDIS

Kinematic Requirements

- High Luminosity with E ~ 11 GeV
- Only electron is detected.
- Wide x-range: 0.25-0.75: untangle physics.
- $W^2 > 4$ GeV: Isolate DIS events.
- Large scattering angles ~22° < θ < ~35°: (for high x & y).
- Large azimuthal acceptance.
- Better than 1% statistical errors for small bins
- Q² range a factor of 2 for each x bin: Measure Higher Twist.
 - (Except at very high x)
- 2 GeV < E' < 6 GeV: Low background
- ~2% Momentum resolution

CLEO magnet with the LD_2 or LH_2 target in the center provides the desired acceptance.

SoLID Apparatus

Achieving High Luminosity

- 50 μ A beam current.
- 40 cm LD₂ target
- ~40% azimuthal coverage with baffles which provide curved channels that block positive and neutral background particles
- Azimuthally symmetric.
- High-rate GEM tracking Chambers

Magnet from CLEO experiment at Cornell is at JLab. Cold test is expected to be completed by October.

Baffles

GEM Chambers

SoLID Apparatus

Requirements for Particle Identification and Trigger

- Light Gas Cherenkov: identify electrons for trigger; reject pions.
- Shashlyk electromagnetic calorimeter (ECal) : coincident trigger and further particle identification.
- With tracking, tight E/p cuts reduce pion backgrounds.

$$A_{PV} = Q_W^e \frac{Q^2 G_F}{\sqrt{2}\pi} \left(\frac{1-y}{1+y^4 + (1-y)^4} \right)$$

Moller (Simple formula)

$$A_{PV} = \frac{G_F Q^2}{\pi \sqrt{2}} \left(Q_W^p + A_M + A_s + A_A \right)$$

P2: eP (Simple formula at low E and θ)

$$A^{PV} = \left(\frac{G_F Q^2}{4\sqrt{2}\pi}\right) \left(Y_1 a_1 + Y_3 a_3\right)$$

SoLID PVDIS (Simple for d at large E and θ , only way to get C₂'s)

$$a_1^d = \frac{6}{5}(2C_{1u} - C_{1d}); \quad a_3^d = \frac{6}{5}(2C_{2u} - C_{2d}).$$

 $Q_W(Z,N) = -2[C_{1u}(2Z+N) + C_{1d}(Z+2N)]$

 $Q_W(e) = -2C_{2e}$

Measure all the C's as precisely as possible

SoLID DOE Science Review

Normalization Systematics:

$$\frac{A_{PV}^{phys}}{Q^2} = \frac{1}{P_b} \frac{A_{PV}^{measured} - f A_{PV}^{\pi}}{1 - f}$$

- Beam Polarimetry
- Average Q²
- Event reconstruction (f)