Measurement of the Beam-Normal Single Spin Asymmetry in Deep Inelastic Scattering using the SoLID Spectrometer

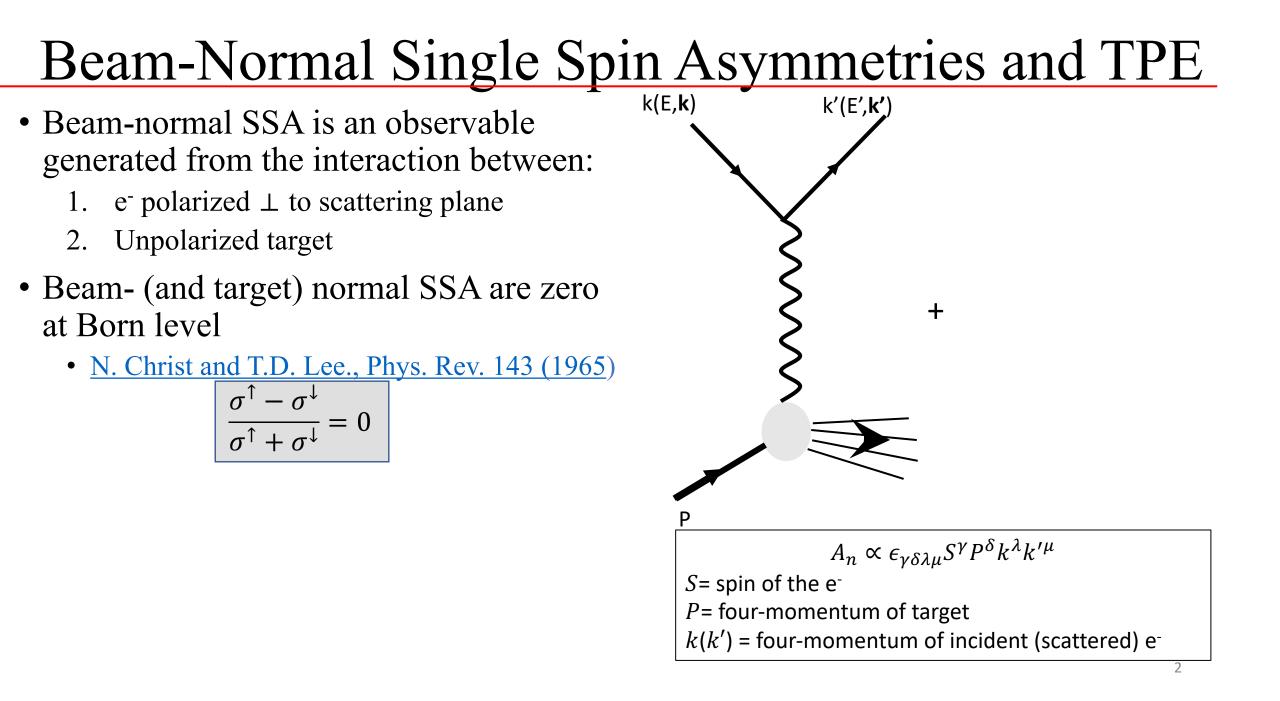
On behalf of

William Henry¹, Michael Nycz², Ye Tian³, Weizhi Xiong⁴, Xiaochao Zheng²

¹Jefferson Lab

²University of Virginia ³Syracuse University

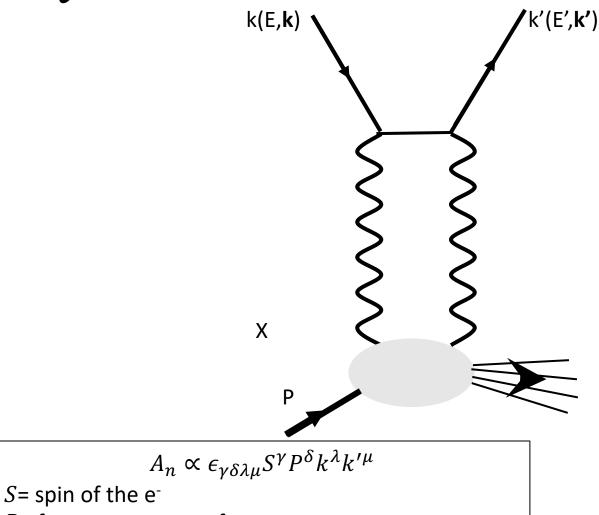
⁴ShandongUniversity



PAC 50 A Hall A and SoLID proposal 07/12/2022

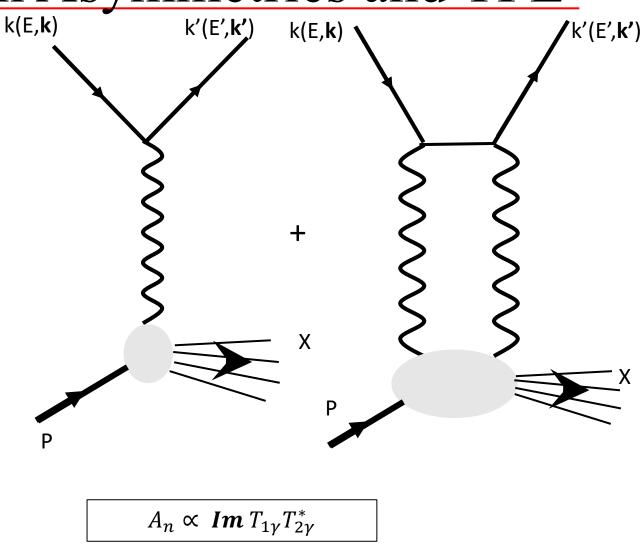
Beam-Normal Single Spin Asymmetries and TPE

- Beam-normal SSA is an observable generated from the interaction between:
 - 1. e^{-} polarized \perp to scattering plane
 - 2. Unpolarized target


$$\frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}}$$

Beam-Normal Single Spin Asymmetries and TPE

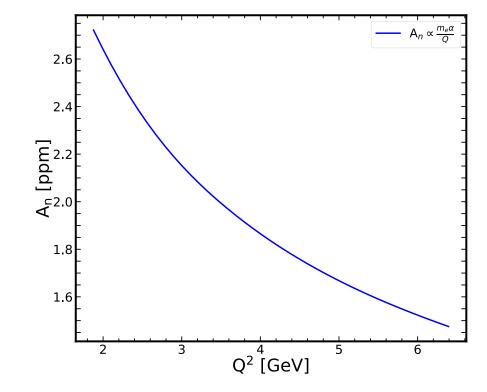
- Beam-normal SSA is an observable generated from the interaction between:
 - 1. e^{-} polarized \perp to scattering plane
 - 2. Unpolarized target
- Beam- (and target) normal SSA are zero at Born level
 - <u>N. Christ and T.D. Lee., Phys. Rev. 143 (1965</u>
- Beyond born level, beam- (and target) SSA can be non-zero


$$\frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} \neq 0$$

- *P*= four-momentum of target
- k(k') = four-momentum of incident (scattered) e⁻

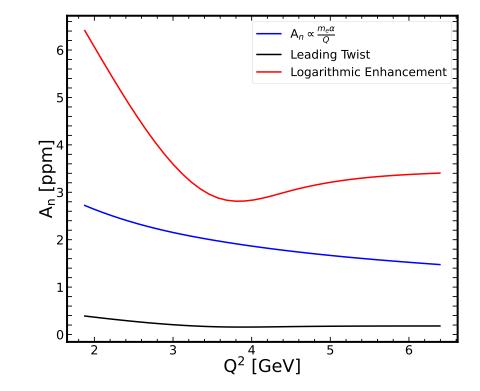
Beam-Normal Single Spin Asymmetries and TPE

- Beam-normal SSA is an observable generated from the interaction between:
 - 1. e^{-} polarized \perp to scattering plane
 - 2. Unpolarized target
- Beam- (and target) normal SSA are zero at Born level
 - <u>N. Christ and T.D. Lee., Phys. Rev. 143 (1965</u>
- Beyond born level, beam- (and target) SSA can be non-zero
- Are due to the interference of single and two photon exchange processes
 - Normal single-spin asymmetries provide access to the **imaginary** part of the TPE



Beam-Normal Single Spin Asymmetries

- 1. Non-zero BNSSA in DIS?
- 2. Dominant mechanism?
 - Two photon exchange occurs between lepton and the same quark?
 - Two photon exchange occurs between lepton and different quarks?
 - A full understanding of normal single spin asymmetries could have implications on TMD studies
- 3. First precision measurement in DIS (past measurements in elastic only)



• Beam-normal prediction: Exchange of two photons occurs between lepton and the same quark

•
$$A_n = \frac{\alpha_{EM} m_l |\vec{s}_T| \sin(\varphi_s)}{2Q} \frac{y^2 \sqrt{1-y}}{1-y+\frac{1}{2}y^2} \frac{\sum_q e_q^3 q(x)}{\sum_q e_q^2 q(x)}$$

- <u>A. Metz et al., Phys. Lett. B 643 (2006)</u>
- Prediction for $A_n: 10^{-6}-10^{-7}$

• Beam-normal prediction: Exchange of two photons occurs between lepton and the same quark

•
$$A_n = \frac{\alpha_{EM} m_l |\vec{S}_T| \sin(\varphi_s)}{2Q} \frac{y^2 \sqrt{1-y}}{1-y+\frac{1}{2}y^2} \frac{\sum_q e_q^3 q(x)}{\sum_q e_q^2 q(x)}$$

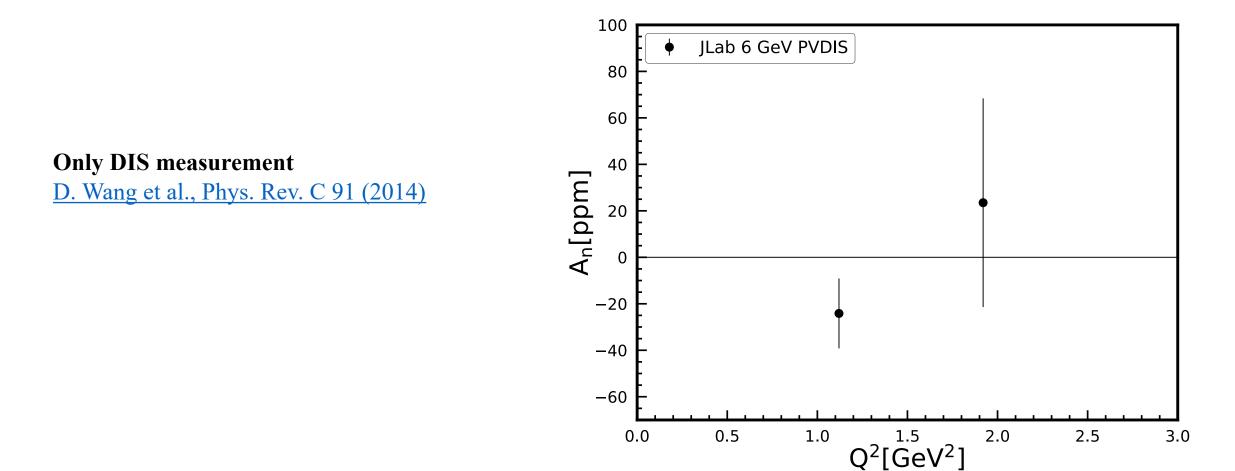
- A. Metz et al., Phys. Lett. B 643 (2006)
- Prediction for $A_n: 10^{-6}-10^{-7}$
- Target-Normal Predictions (Neutron):
 - Exchange of two photons occurs between lepton and the same quark 1.
 - <u>A. Afanasev et al., Phys. Rev. D77 (2008)</u> : TNSSA ~ 10⁻⁴
 - Exchange of two photons occurs between lepton and different quarks 2.
 - <u>A. Metz et al. Phys. Rev. D86 (2012)</u>:TNSSA ~ 10⁻²
- JLab 6 GeV target- normal SSA (Neutron) | Hermes target-normal SSA (Proton)
 - $(-1.09 \pm 0.38) \times 10^{-2}$ (Non-zero: 2.89 σ)

 $(0.6 - 0.9) \pm (1.50 - 3.97) \times 10^{-3}$ (consistent with 0)

• Beam-normal prediction: Exchange of two photons occurs between lepton and the same quark

•
$$A_n = \frac{\alpha_{EM} m_l |\vec{S}_T| \sin(\varphi_s)}{2Q} \frac{y^2 \sqrt{1-y}}{1-y+\frac{1}{2}y^2} \frac{\sum_q e_q^3 q(x)}{\sum_q e_q^2 q(x)}$$

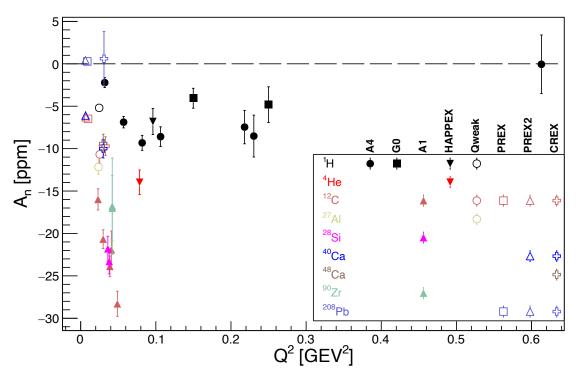
- <u>A. Metz et al., Phys. Lett. B 643 (2006)</u>
- Prediction for $A_n: 10^{-6}-10^{-7}$
- Target-Normal Predictions (Neutron):
 - . Exchange of two photons occurs between lepton and the same quark
 - <u>A. Afanasev et al., Phys. Rev. D77 (2008)</u>: TNSSA ~ 10⁻⁴
 - 2. Exchange of two photons occurs between lepton and different quarks
 - <u>A. Metz et al. Phys. Rev. D86 (2012)</u>:TNSSA ~ 10⁻²
- JLab 6 GeV target- normal SSA (Neutron) Hermes target-normal SSA (Proton)
 - $(-1.09 \pm 0.38) \times 10^{-2}$ (Non-zero: 2.89 σ) $(0.6 0.9) \pm (1.50 3.97) \times 10^{-3}$ (consistent with 0)
- Dominant process for target-normal SSA is still not well understood
 - Assumption is that the exchange of two photons occurs between the lepton and different quarks is dominant but not conclusive. Need more experimental evidence
- Assumption is that the exchange of two photons occurs between the lepton and a single quark for beam-normal SSA. Need any experimental evidence to support


Motivation

- (Almost) non-existent experimental evidence for the beam-normal SSA in DIS
- <u>M. Schlegel, *Phys.Rev.D* 87 (2013) 3, 034006</u>
 - "In principle, single-spin observables in inclusive DIS with either the **lepton** or nucleon being transversely polarized **are equally fundamental**"
- DIS TPE data are limited
 - "Measurement of A_n to **5 ppm would** provide very useful information. Even A_n to 10 ppm is a big step" Andrei Afanasev
- A high precision measurement of the beam-normal SSA would be impactful in
 - Understanding the dominant mechanism in BNSSA and TNSSA
 - Constraining TPE models
- A large SSA beyond leading twist could have implications to TMD measurements
 - SIDIS measurements of TMDs via SSA could require a separation of TPE and TMD effects

Normal Single Spin Asymmetries: DIS

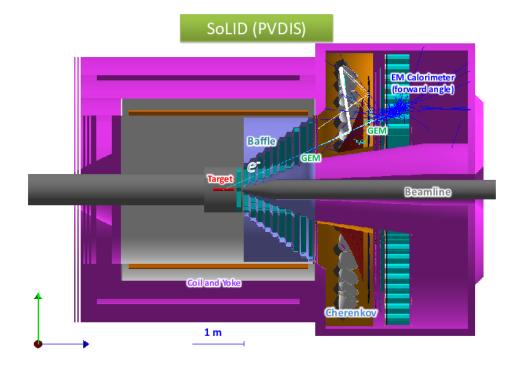
- Investigations in the TPE date back to measurements in the 1960's
- Measurements:
 - Differences in the ratio of cross sections: $\frac{e^+}{e^-}$ or $\frac{\mu^+}{\mu^-}$
 - Beam- or target- normal single spin asymmetries
- Limited number of TPE measurements
 - BNSSA : (nearly) non-existent and no planned measurements
 - TNSSA : Measurements on proton and neutron (via ³He)
 - <u>Ay (E12-11-108A/E12-10-006</u> : Approved SoLID Run Group Experiment
 - Uncertainty: 10^{-4} - 10^{-3} (1.5 < Q^2 < 7.5 GeV²)


Beam-Normal Single Spin Asymmetry

Elastic Beam-Normal Single Spin Asymmetry

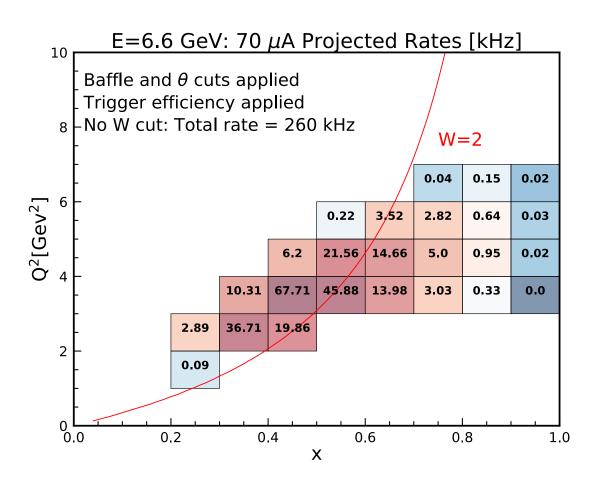
F. E. Maas et al., Phys. Rev. Lett. 94 (2005)
D. S. Armstrong et al., Phys. Rev. Lett. 99 (2007)
D. Androić et al., Phys. Rev. Lett. 107 (2011)
S. Abrahamyan et al., Phys. Rev. Lett. 109 (2012)
A. Esser et al., Phys. Rev. Lett. 121 (2018)
B. Gou et al., Phys. Rev. Lett. 124 (2020)
D. Androić et al., Phys. Rev. C 104 (2021)

Elastic Beam-Normal Single Spin Asymmetry Measurements



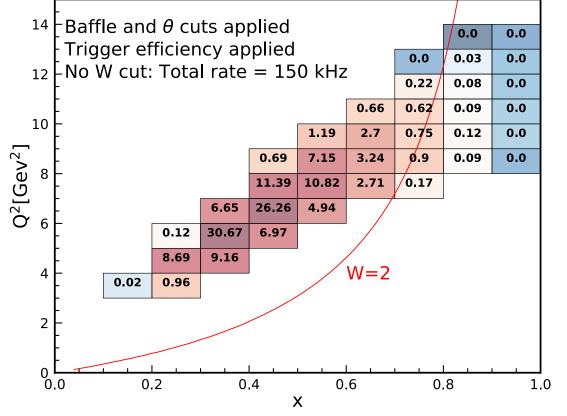
*Reproduce by: **Darren Upton**

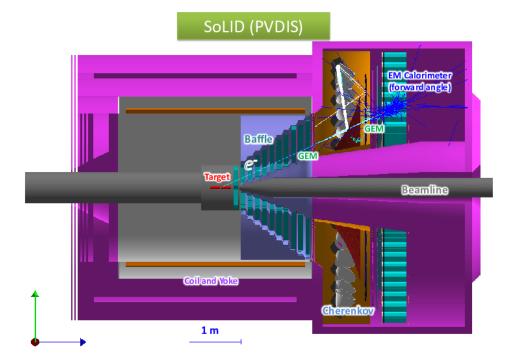
Experimental Overview


- First high precision beam-normal SSA measurement in DIS
 - Expected precision at the few ppm level
- SoLID configuration: PVDIS
 - Scattering angle: $22^{\circ} < \theta < 35^{\circ}$
 - Large azimuthal coverage
 - PVDIS 40-cm liquid hydrogen target
- Transversely polarized e⁻ beam
- Beam Current
 - 70 µA
- Beam-normal SSA measured from the ϕ dependence

•
$$\frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} = A_n \sin(\varphi)$$

- First high precision beam-normal SSA measurement in DIS
 - Expected precision at the few ppm level
- SoLID configuration: PVDIS
 - Scattering angle: $22^{\circ} < \theta < 35^{\circ}$
 - Large azimuthal coverage
 - PVDIS 40-cm liquid hydrogen target
- Transversely polarized e⁻ beam
- Beam Current
 - 70 µA
- Beam-normal SSA measured from the ϕ dependence


•
$$\frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} = A_n \sin(\varphi)$$


- First high precision beam-normal SSA measurement in DIS
 - Expected precision at the few ppm level
- SoLID configuration: PVDIS
 - Scattering angle: $22^{\circ} < \theta < 35^{\circ}$
 - Large azimuthal coverage
 - PVDIS 40-cm liquid hydrogen target
- Transversely polarized e⁻ beam
- Beam Current
 - 70 µA
- Beam-normal SSA measured from the ϕ dependence

•
$$\frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} = A_n \sin(\varphi)$$

E=11 GeV: 70 μ A Projected Rates [kHz]

- High luminosity and large azimuthal coverage of SoLID key to beamnormal SSA measurement
 - $\mathcal{L} \sim 5.4 \cdot 10^{38} \text{ cm}^{-2} \text{ s}^{-1}$
- SoLID provides a unique opportunity to perform a precision measurement of the beam-normal SSA in deep inelastic scattering
- TAC: "Overall the proposal has no major technical show-stopper"

Systematic	Uncertainty
Target endcaps	5%
Polarimetry	3%
Radiative Corrections	1-2%
Particle background	1%
Q ² determination	0.2%
Target polarization	Under 0.1 ppm
Total Systematic	(6.0 - 6.2)%

Uncertainties dominated by statistics

Systematic	Uncertainty
Target endcaps	5%
Polarimetry	3%
Radiative Corrections	1-2%
Particle background	1%
Q ² determination	0.2%
Target polarization	Under 0.1 ppm
Total Systematic	(6.0 - 6.2)%

	$E_{\rm Beam} = 6.6 {\rm GeV}$	
Day	Activity	Time (Hours)
1	Spin Dance	16
1	90° Wien Rotation	4
8	90° Wien Rotation	4
8	Moller Measurement	12
8	90° Wien Rotation	4
15	90° Wien Rotation	4
15	Moller Measurement	12
15	90° Wien Rotation	4
22	Spin Rotator Flip	4
22	Spin Dance	16
22	90° Wien Rotation	4
29	90° Wien Rotation	4
29	Moller Measurement	12
29	90° Wien Rotation	4
Total (6.6 GeV)		104 hours (4.3 days)
	$E_{\text{Beam}} = 11.0 \text{ GeV}$	
Day	Activity	Time (Hours)
1	Spin Dance	16
1	90° Wien Rotation	4
8	90° Wien Rotation	4
8	Moller Measurement	12
8	90° Wien Rotation	4
15	90° Wien Rotation	4
15	Moller Measurement	12
15	90° Wien Rotation	4
22	Spin Rotator Flip	4
22	Spin Dance	16
22	90° Wien Rotation	4
Total (11.0 GeV)		84 hours (3.5 days)
Grand Total (6.6 GeV + 11.0 GeV)		3.9 PAC days

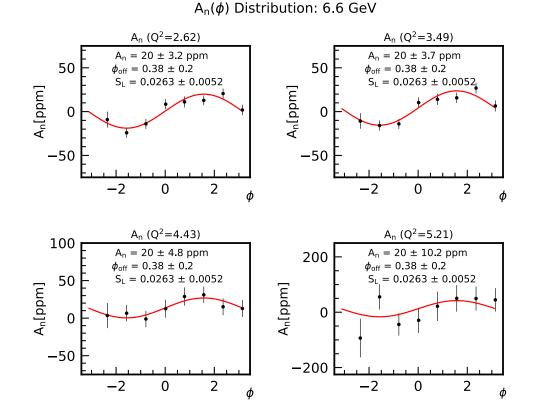
Stability of transverse polarization is equivalent to longitudinal polarization

Systematic	Uncertainty
Target endcaps	5%
Polarimetry	3%
Radiative Corrections	1-2%
Particle background	1%
Q ² determination	0.2%
Target polarization	Under 0.1 ppm
Total Systematic	(6.0 - 6.2)%

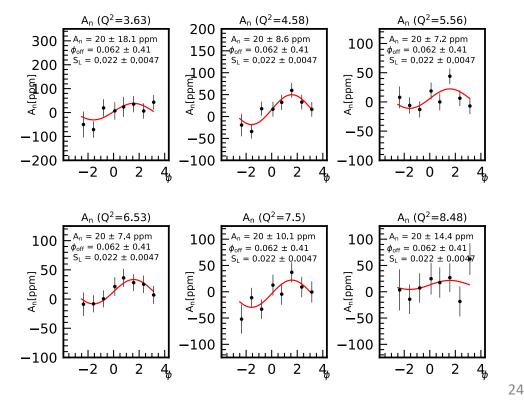
Added In response to TAC and reader review

Radiative Correction Factor **6.6 GeV**RC varies between 1.7 and 2.5% **11 GeV**RC varies between 1.6% and 10.0%

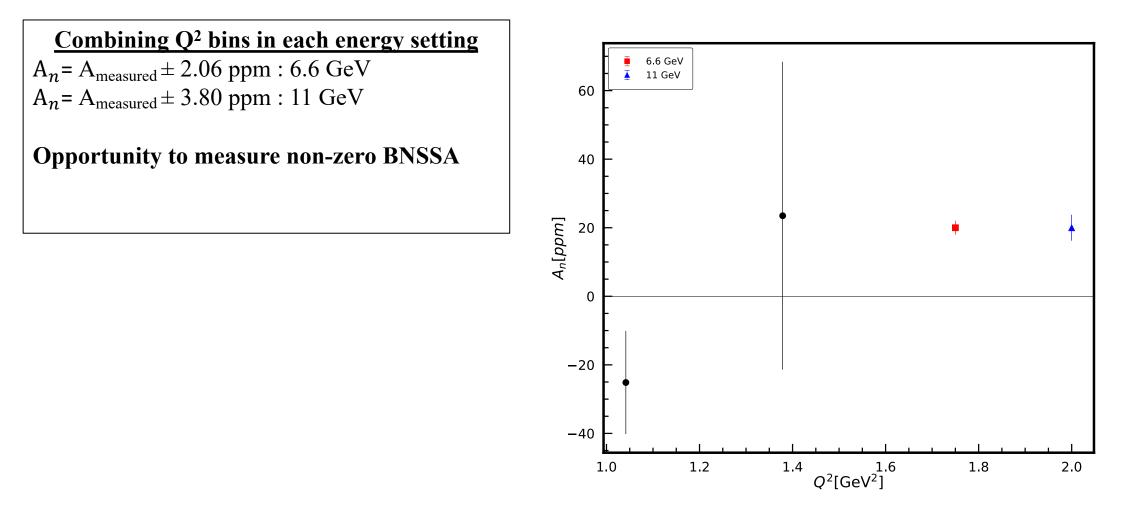
Systematic	Uncertainty
Target endcaps	5%
Polarimetry	3%
Radiative Corrections	1-2%
Particle background	1%
Q ² determination	0.2%
Target polarization	Under 0.1 ppm
Total Systematic	(6.0 - 6.2)%


Uncertainties dominated by statistics

Projected Results


SoLID simulation based on PVDIS configuration

40-cm LH₂ target W >2, 22°< θ < 35°, P_b=85%

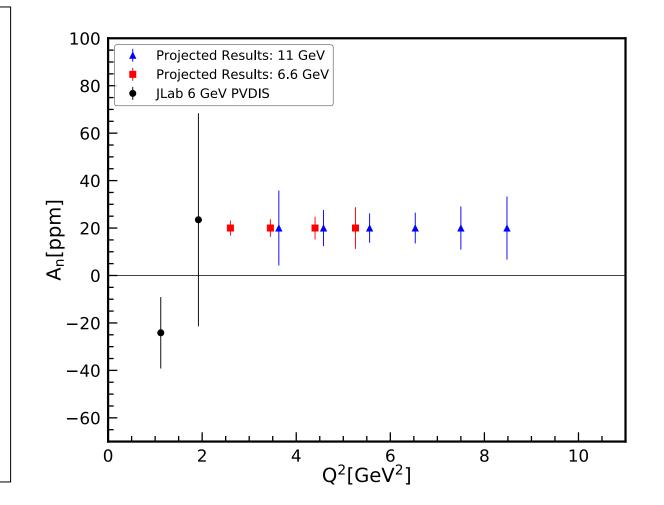

Beam-normal SSA extracted from multi-parameter fit: $C_n \sin(\varphi + \varphi_{offset}) + S_L A_{PVDIS}$

$A_n(\phi)$ Distribution: 11 GeV

Projections: Result and Uncertainty

Projected results not at expected Q² values

Projections: Result and Uncertainty


Combining Q² bins in each energy setting

 $A_n = A_{\text{measured}} \pm 2.06 \text{ ppm} : 6.6 \text{ GeV}$ $A_n = A_{\text{measured}} \pm 3.80 \text{ ppm} : 11 \text{ GeV}$

Opportunity to measure non-zero BNSSA

TAC Theory: "...it will be interesting to observe the Q² dependence of the asymmetry empirically, to test whether the scattering takes place on a single quark or involved more complicated nonperturbative multi-parton interactions."

The opportunity to observe a Q² dependence with sufficient precision is primarily due to the design SoLID

Beam Time Request

Purpose	Time (Days)	Energy (GeV)	Beam Current (µA)
Commissioning	2	varies	As needed
Polarimetry	4	varies	As needed
Pass Change	0.67	N/A	N/A
Reverse SoLID Polarity	0.67	N/A	N/A
Reverse polarity run	0.33	6.6	70
Reverse polarity run	0.33	11	70
40-cm LH ₂ Production	17	6.6	70
40-cm LH ₂ Production	11	11	70

A total of 38 PAC days

Summary

- The proposed experiment would be the **first high-precision measurement** of the beam-normal single spin asymmetry in deep inelastic scattering
- No other planned measurements
- The beam-normal single spin asymmetry provides an essential tool for studying the two-photon exchange effect
 - Will add a new observable to the TPE landscape
- Important for theoretical models
 - Further insight into dominant mechanism (single or two quark)
 - Complementary to the already approved target-normal single spin asymmetry
- Theoretical support
 - INT: PVDIS at JLab 12 GeV and beyond
 - <u>Radiative Corrections from medium to high energy experiments</u>
 - Drive interest of both experimental and theoretical communities

• Jefferson Lab and SoLID make this a realistic measurement

Thank You

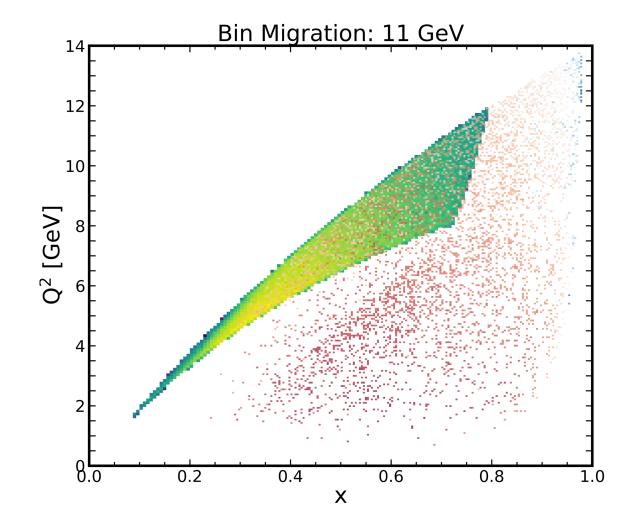
Projections

- Estimated the projected impact
- Utilized SoLID simulation for PVDIS configuration
 - 40-cm LH₂ Production
 - W >2, 22°< θ < 35 °, P_b=85%
- Generate pseudo-data:

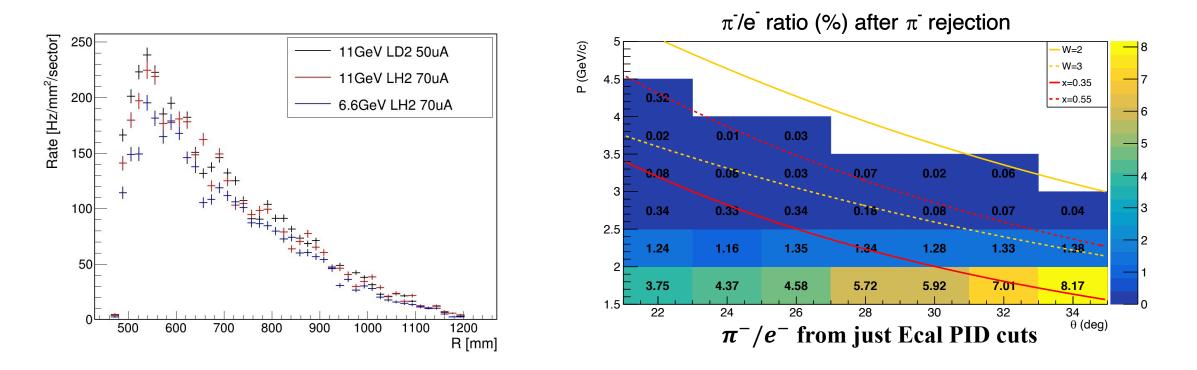
- r_i and r_b : random number drawn from Normal distribution
- r_b common across all bins at same beam energy
- $A_{raw,pseudo-data}^{i^{th}bin} = 20_{ppm} \sin(\phi) + r_i \Delta_{stat}^i + r_b A_{p,PVDIS}^i$
- Perform multi-parameter fit:

$$f_{1} = C_{1} \sin(\varphi + \varphi_{\text{offset}}) + S_{L}A_{\text{PVDIS}}$$

$$f_{2} = C_{2} \sin(\varphi + \varphi_{\text{offset}}) + S_{L}A_{\text{PVDIS}}$$

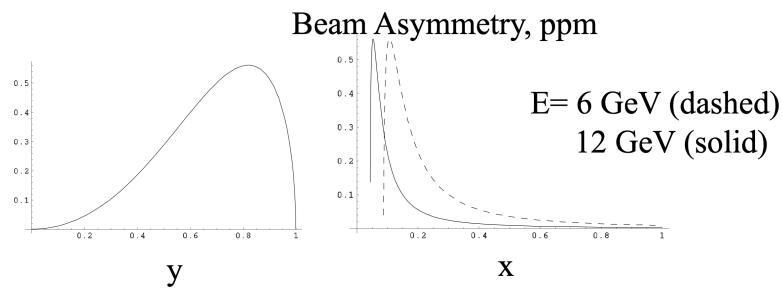

$$\vdots$$

$$f_{N} = C_{N} \sin(\varphi + \varphi_{\text{offset}}) + S_{L}A_{\text{PVDIS}}$$

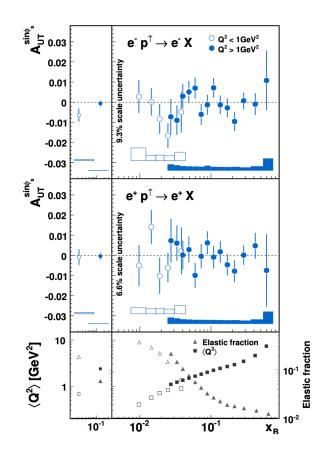

Systematic	Uncertainty
Target endcaps	5%
Polarimetry	3%
Radiative Corrections	1-2%
Particle background	1%
Q ² determination	0.2%
Target polarization	Under 0.1 ppm
Total Systematic	(6.0 - 6.2)%

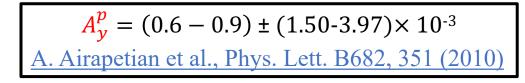
<u>Target Endcaps: Aluminum</u> Upstream: 120µm Downstream: 150µm

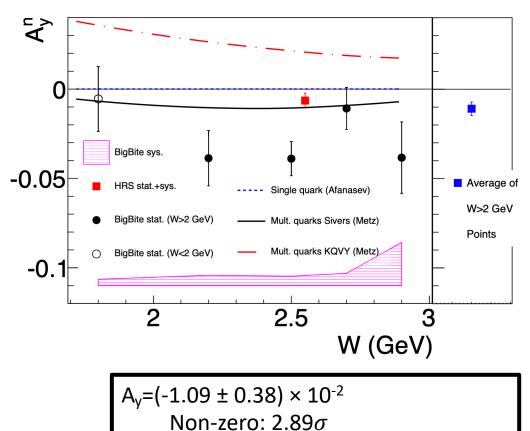
Radiative Corrections



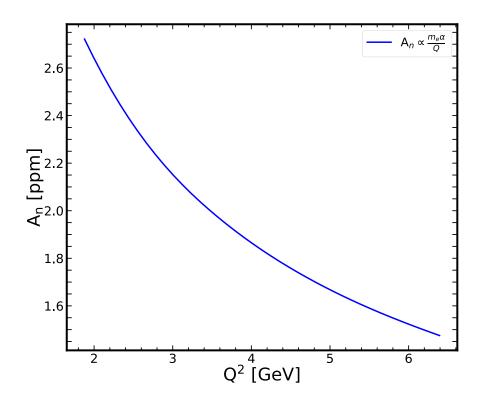
Background


Total background expected to be smaller than PVDIS LD2

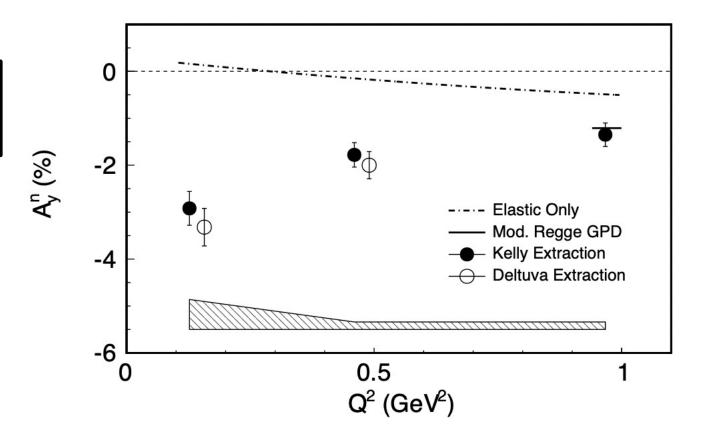

Logarithmic Enhancement


- The leading-twist calculation predicts the effect around 1/2 ppm
- Regge-limit (optical theorem): 10-100ppm: AA PRB 599 (2004) 48
- PVDIS at JLAB *Phys. Rev.* C 91 (2015) ~20ppm, large uncertainty
- Large-log enhancements leads to the estimates A_n~0.5ppm (leading twist) 0.5ppm log(Q2/me2)~8ppm

Target-Normal Single Spin Asymmetry


Neutron Asymmetries extracted: $A_y^{3_{\text{He}}} = (1 - f_p)P_nA_y^n + f_pP_pA_y^p$ $P_p(P_n)$ = Effective proton (neutron) polarization

Katich et al., Phys. Rev. Lett. 113 (2014)


Enhancement of A_n

- <u>A. Metz et al., Phys. Lett. B 643 (2006)</u>
- Exchange of two photons occurs between lepton and the same quark
- $A_n \sim (10^{-6} 10^{-7})$
- <u>M. Schlegel and A.Metz (2009)</u>
 - "One might also speculate about enhanced results from effects beyond the naive parton model. In Refs. [8, 9, 10, 11] (double) logarithms of the type $log(Q^2/m^2)$ were advocated in connection with the transverse beam SSA in elastic lepton-nucleon scattering. Such logarithmic terms might also increase the beam SSA in DIS considered here. However, further work is required in order to decide whether and how precisely such effects show up for the DIS case"
- TNSSA
 - "No very realistic numerical estimate of all the contributions. Therefore, it is difficult to say which of the two contributions (coupling to different quarks vs coupling to the same quark) dominates."

Target-Normal Single Spin Asymmetry

Highest Q² point is consistent with the GPD calculations Y.W. Zhang et al., Phys. Rev. Lett. 115 (2015)

