

Towards Self-Driving Laboratories: AI Experimental Calibration and Control

Thomas Britton

David Lawrence Naomi Jarvis Torri Jeske Diana McSpadden Nikhil Kalra

Self-Driving Labs

- Running experiments is a time consuming activity
 - Large amounts of time and expertise
 - Sometimes large amount of experiments to cover the parameter space

- Routine execution
 - Big steps in materials science, chemistry/biology
 - Tie-ins with robotics

Jefferson Lab

AI vs COVID

https://www.news-medical.net/news/20210607/Using-AI-to-fight-COVID-19.aspx

Self-Driving Labs

AI can act as a force multiplier
 Aid in the menial

- Single person shifts during covid
 - Monitoring

SISA

U.S. DEPARTMENT OF

• Routine actions

• Who wouldn't want untiring optimum?

Self-Driving Labs

- Before we can do the analysis need to calibrate
 - Iterative and time consuming
 - Up to months depending on complexity
 - Impediment to analysis/publication

- Sometimes experts have to diligently watch environmental factors and intervene
 - Naomi late calls to the counting house to stop a run because of meteorological conditions

Complex Interconnected Systems

- Particle physics rely on very complex highly interconnected systems
 - Physics dependent on beam properties
 - Careful control of coupled magnets
 - Different detectors with specific goals
 - Tracking
 - Calorimetry
 - PID
 - Experimental setups select for kinematics
 - Angular
- All bundled with competing goals for physics

Start Small

- Need to break it down:
 - Low risk
 - Recoverable
 - Abandonable
 - Proveable
 - Methods to show we are right
 - Trustable
 - Expected behavior
 - Needs to work alongside current systems
 - Paradigms don't change immediately...

Introducing the CDC

- 1.5 m long x 1.2 m diameter cylinder
- 3522 anode wires at 2125 V inside 1.6 cm diameter straws
- 50:50 Ar/CO₂ gas mix
- Used to detect and track charged particles with momenta p > 0.25 GeV/c
- Requires two calibrations: chamber gain and time-to-distance

Calibration AND Control

- Gain: affects PID selections in analysis
 - Sensitive to environmental conditions
 - Beam conditions change with the experiment
 - Gain correction factor obtained from Landau fit to amplitude
- Time to distance: track fitting, vertex and dE/dx resolution
 - Non-analytic fit function generates 6 unique calibration constants
- Calibration constants are generated per run

Calibration AND Control

- Fairly simple controls
 - HV...and that is it
 - HV settings affect the gains and TtoD
- Potentially highly dimensional
 - Reconstructed tracks?
 - Beam properties?
 - Environmental conditions?
- Traditional method already exists
 - trusted

The Plan

- Can AI even do "traditional" calibrations?
 - Can we understand the road?
 - Take in various input variables and produce the calibration value(s)
- Begin with supervised learning
 Gains first
 - TtoD

- Leverage gains prediction for controls
 - Understood connection between HV and gains

Gains

- Fairly simple
- Already knew that **pressure** is a primary driver
 - Related to board currents
 - PV=nRT

- Smaller dimensionality
 - One control
 - Assuming it works....

06/07/22 12

Gains

Conventional

- CDC operating voltage set at 2125 V
- · Calibrations are fine tuned in an offline setting
- Current method is relatively slow, requires multiple iterations
- Time scale to complete all calibrations is a few months

AI

- Maintain consistent detector response to changing environmental/experimental conditions by adjusting CDC HV
- Produce calibration constants online

Considerations

06/07/22

14

• An ML approach

U.S. DEPARTMENT OF

- How are we going to **train** the model?
 - What data do we need (see next slide)

Do we have the needed data for inference?
Is it formatted correctly?

- How do we **integrate** it with current operations?
 - Want as little human input as necessary

- Many different metrics to use
 - L1-regularization
 - Pro: simple
 - Con: small num variables linearly correlated
 - Shapely Values
 - Gini importance
 - Etc etc etc

U.S. DEPARTMENT OF

06/07/22

16

U.S. DEPARTMENT OF

SISA

- Reconstruction takes a long time
 - Time based tracking ~90% of recon time
 - Less feasible for an online environment
 - For now.....

- Best to do it with "EPICS only" data
 - Turns out completely doable

Are things correlated?
 Silly to use both F and C if temperature is important

- Seek the minimal set of features
 - While still being robust
 - Some redundancy might be ok

- Data extracted from Experimental Physics Industrial Controls System (EPICS)
- Initial features generated from:
 - Atmospheric pressure
 - Gas temperature

U.S. DEPARTMENT OF

- Current drawn from CDC HV boards
- Readily available during the experiment

Gaussian Process

- Gaussian process model: probability distribution over possible functions that fit a set of points
- Suited to small data set:
 - 430 training runs
 - 106 testing runs
- · Provides uncertainty quantification
- Implemented using SciKit Learn

Early Results

Some methods don't generalize well over datasets

Makes sense with the **discrete running conditions**

Model	# Features	MAPE	MAX PE	ratio >	ratio > 2%	ratio > 5%
				170		
Linear Regression	11	1.3%	19.1%	97 / 164		
Linear Regression	5	2.3%	20.3%	96 / 164	60 / 164	21/164
Linear Regression (2020)	11	0.72%	2.0%	30 / 106	1 / 106	0 / 106
Linear Regression (2020)	5	0.74%	2.6%	26 / 106	3 / 106	0 / 106
MLP - 7 layers	122	1.8%	11.4%	75 / 164		
MLP – 3 layers	122	1.9%	11.9%	90 / 164		
MLP - 4 layers	122	1.9%	10.8%	84 / 164	51 / 164	16 / 164
GPR - 26 Features	26	1.7%	10.9%	80 / 164	42 / 164	12/164
GPR - 14 Features	14	1.45%	9.7%	66 / 164	38 / 164	12/164
GPR - 11 Features	11	1.5%	10.1%	72 / 164	37 / 164	12 / 164
GPR - 5 Features	5	1.5%	9.1%	70 / 164	37 / 164	10/164
GPR - 11 Features (2020)	11	0.5%	4.1%	17 / 106	1/106	0 / 106
GPR - 5 Features (2020)	5	0.7%	3.6%	28/106	3 / 106	0 / 106
RF - 82 Features	82	1.7%	18.5%	83 / 164		
XGBoost - corr > 0.2	82	1.44%	11.8%	68 / 164		
XGBoost - corr > 0.3	71	1.55%	11.2%	71/164		
XGBoost - corr > 0.4	12	1.8%	11.1%	72 / 164		EPIC
XGBoost - All Features	122	1.56%	10.2%	76 / 164		

GPR Model

06/07/22 22

Time to Distance

- CDC is a tracking detector
 - Interested in the <u>where</u> of particles

- Take the signals and through an understanding of how fast the electrons drift to the wires convert to distance
 - HV dependent
 - Gas dependent
 - Both mixture and PV=nRT

Time to Distance

• Current calibration method produces 6 unique calibration constants from fit to data

$$d(t) = f_{\delta} \left(\frac{d_0(t)}{f_0} P + 1 - P \right)$$
$$f_{\delta} = a \sqrt{t} + bt + ct^3$$
$$f_0 = a_1 \sqrt{t} + b_1 t + c_1 t^3$$

$$a = a_1 + a_2 |\delta|$$

$$b = b_1 + b_2 |\delta|$$

$$c = c_1 + c_2 |\delta|$$

Difficulties

06/07/22

25

• 6 parameters

- a1, b1, c1, a2, b2, c2
 - Ambiguities in sign
- NN used **custom loss** to "bake in" functional forms
 - Sign shifting observed
- Switched to **GPR**

U.S. DEPARTMENT OF

- Cascade: use a1 to learn the next....those 2 to get the third
 Errors
- One GPR per parameter

<u>Results</u>

Model Results: PRELIMINARY

	2018 & 2020 Mean % f _{Drift} Difference	2018 & 2020 Max % fDifference	2020 Mean % f _{Drift} Difference	2020 Max % f _{Drift} Difference
NN	0.11%	0.5%	0.066%	0.27%
GPR	<mark>0.093%</mark>	0.5%	<mark>0.052%</mark>	<mark>0.21%</mark>

NN: 4 layers, 16 nodes per layer, sigmoid and tanh activation functions. 5 input features, 6 output values. Used double integral custom loss function.

GPR: kernel = Radial Basis Function + WhiteNoise: tuned for each calibration constant. Six predictions: one for each calibration constant.

One can see that in addition to the uncertainty information, we also have more accurate predictions.

<u>Results</u>

A Need(?) for Physics Measure

- The agreement with traditional methods is good
 - But leaves **unanswered questions**:
 - Why do we trust the traditional method?
 - How much difference is there in physics outcomes with error in gains?

- Difficulties
 - Not a singular value
 - Competing metric priorities

Controls

What are our actions?
 CDC only has HV

- How do we interact with the control?
 - Turns out the CDC has an EPICS variable for the HV setpoint
 - If the voltage is on it will be set to the setpoint
 - Changing the setpoint changes the voltage
 - The rate of change is ~10V/s

Goals

- Modify V to stabilize gains
 - Traditionally, the input variables are fluctuating, the V is held constant and the gains necessarily fluctuate
 - We can, in principle, fluctuate the V in response to the input variables and produce a stable gain

Use cosmics to gain confidence before production
 O Higher stakes with beam on

Towards Self-Calibrating Data

Ultimately we would like to create a smart detector system which can adapt to its environment and produce self-calibrated data
 Or at least reduce the iterations

- The system should be able to adequately **control the detector with no user input**
 - Maybe we'll put a human approval step in there to make people feel safe....or not

- Should be able to update "arbitrarily" fast
 - To facilitate a **change in paradigm**

Cosmics Test

06/07/22

32

- Split the CDC into 2 halves
 Leave one side at a fixed HV
 - Let the **AI control the other**

• AI

U.S. DEPARTMENT OF

- Update the HV every 5 min
- Completely autonomous

• Should see the AI system side's gains stabilized

Modular System

The Controls System

• On the fly configurable

- Once per control loop pass
 - Poll time
 - Recommend scale
 - Default values
 - Control mask
 - Look-back time
 - Other control parameters

Cosmics Test Results

06/07/22 35

Cosmics Test Results

36

CJSA

(B)

Next Steps

- Other systems
 - In and out of GlueX
 - **FDC** (another drift chamber)
 - BCAL (calorimeter)
 - **TOF** (downstream)

• <u>Interoperability</u>

U.S. DEPARTMENT OF

- Build a smart bridge between detector systems
 - Afterall, we want to optimize the physics results....

06/07/22

37

Disrupt Data Taking

• Wait no!...do the opposite...**Change the paradigm!**

- Want to move to a mode of operation in which the idea of a "Run" is no more than a human construct
 - More streaming read-out like
 - Each event is perfectly calibrated and detectors can operate continuously in a changing experimental environment

- Perhaps the conditions themselves are optimized....
 - Perhaps the data is already reconstructed online....
 - Perhaps the paper is written for you....

U.S. DEPARTMENT OF

Towards Full Self-Driving

- Once the paradigm has changed we can move towards self driving
 - Synergy with other AI tech
 - E.g. Hydra

- Expert engagement at a high level
 - Routine operations delegated to the machines themselves

- Need protocol for **interoperability**
 - Operational data made for AI
 - Formatted for AI

Beyond the Borders

- Set sights beyond experimental border
 - Accelerator connections
- What we really want to **optimize is the physics output**
 - Whatever that happens to be...
- Accelerators are a means to an end
 - Tunings required for the physics
 - Detector configurations dependent on the beam properties

• Imagine holistically managing both the experiment and beam

Accelerator Work

06/07/22

41

- <u>SLAC</u>
 - GP models to optimize beam tunings

• <u>SNS</u>

ENERGY

• Errant beam

CJSA

• Component degradation

JLAB

 RF cavity fault diagnosis

Visions of the Future

- Designing with AI for AI
 - Bayesian optimization for detectors
- Systems instrumented for AI
 - Standard protocols for interoperability
- Automated diagnostics
 - Self-correcting
- Self-documenting
- Quicker to physics
 - Co-modeling?
 - Hypothesis generation

