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Outline

« Tracking detectors, PID, Calorimeter ...
Far-forward/backward detectors

integration
 Central detector:

Background

A Totally Hermetic
Electron Nucleus Apparatus
roposed for IP6 at the Electron-lon Colli

Detector acceptance, location, size , global

CCCe

EIC Comprehensive Chromodynamics Experiment
Collaboration Detector Proposal

A state of the art detector capable of fully exploiting the science potential of the EIC, realized
through the reuse of select instrumentation and infrastructure, to be ready by project CD-4A

December 1, 2021

Materials for slides come from multiple

EIC community efforts

( Yellow Report, EIC Project, ECCE/

ATHENA proposals, etc )

CORE - a COmpact detectoR for the EIC

ity, Tempe Arizona 85287
or Laboratory, Newport News VA 23606
imia. 2

3529

FIG. 2. View of CORE created using “SketchUp” 3D modeling software,

* chyde@odr.cedu
" turonski@jlab.org.

EIC YELLOW REPORT

Volume Ill: Detector




Number of events

[N=0~L-€-a

Statistical uncertainties: ~

GZOI

(do™” =+/N

measured ~ obs Nobs

1

\/ﬁ

measured )

Where L is a luminosity

O 1S a cross section
a is an acceptance,

€ is a detector efficiency

v As high luminosity as possible
v detector efficiency at 100% => no dead-time for detectors

v full acceptance (100%) => detect all particles



Acceptance and event kinematics :

fixed target vs collider ?

Collider
experiments

» 'X..A /s
v ¥ /
- 32, 9 4
AR 1A
' ! ¥’
.
N o , -
- \\Y L
<
N o
é
“

Fixed target
experiments

CEBAF/JLAB (&)

COMPASS (u or hadron) (pp) - ATLAS, CMS (LHC)
LHCb (LHC) (e+e-) - KEK (Belle-IT )
HERMES (HERA)

(e- p/A) - H1,ZEUS ( HERA) , EIC




Homework guestion:

At EIC, electrons with energy of 18 GeV will collide with protons with
energy of 275 GeV . Calculate the center-of-mass energy of this
accelerator.

Consider an experiment, where protons are at rest ( fixed target). What
electron energy would be needed to obtain the same center-of-mass

energy as at EIC collider ?
Collider

experim
Fixed target ’
experiments

I VS

» L34 /i
y { /|
- ! & b !
el IR LS
\''® 4 4
] ()
w / .
N d > ]
A \ \' .
@
<
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Collider: Total acceptance detector But. beam elements limit a forward

> In ideal case - we want to have 47 coverage for the acceptance

detector.
Detection of forward going particles

are particularly challenging

> not usual concern at colliders

> Higher the Ion Beam energy,
more difficult to achieve.

Electron
Beamline

lon
Beamline

[F—

=> Integration with accelerator is
very important

2)=> eP collider=> forward and
backward directions have
different functions.




Why endcaps and forward areas are important at EIC?
e (5

10

-
—— O - OE 20G§V(ZGV§t )
3L D<E'<20 GeV (2 GeV steps) ...,
P/ A . q 10 g 20<E'<100 GeV (5 GeV steps)
p remnant - (10100 GeV)
1 02 §_ ................................................
- ~\
L 00 d v
N f 0
0] S —— f}f’// e ‘
g 7 =
Electron- Hadron- - N 7 o8
endcap ° endcap v E— S A 2T
s - - /

Far- b T . -F : o 7

backward ar- 1071, S
= /

Electron Barrel forward : P L/

Hadron 10 10% 10° 102 10" .
Pseudorapidity:

Transition area from DIS to Photoproduction ( Q*"2<5GeV )
[ N= - In(tan(6/2)) ] 7




Why endcaps and forward areas are important at EIC?

10%¢
O N :
3 ...1<Fh<20GeV(2GeVsteps)
10 - 40 < Fh < 200 GeV (10 GeV steps) (
p remnant N ;(10 x 100 @eV) /,/
B 4
1022 ' (
Electron- Barrel Hadron- - 111!
endcap endcap 10 1|5
= i
Far- p (41-2756GeV) szo e(5- 18GeV ! Far- ) ool 5
backward 0=90° /n=0.88 _ i |
Electron :"“‘5" ) forward -
SR Hadron -
10" 3
 All hadrons are boosted towards hadron-endcap due to -5 4 -3 ) —1
asymmetric beam energies 10 10 10 10 10 X 1

* Proton/lon Remnant
» Diffractive/exclusive physics in the Far-forward area 3
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Why do we need a magnetic field?

Magnetic field to measure momentum and charge
Solenoid:

In a homogeneous B-field the motion of a charged particle is a helix.

pT[GeV]= 0.3¢ B[T]e R [m]

> Need high magnetic field to reconstruct bending radius: for high

A N
momentum particles, otherwise straight segment (no momentum

< :
| ) )\)
P
R":::‘
measurements, no charge) - depends on resolution of tracker.

— B > Also we need higher magnetic field for particles going at the shallow
angle ( along a beampipe )
; '} > BUT Too high magnetic field: low momentum particles could bend/fly

inside a beampipe without detection 9
Yulia Furletova




Central Detector with

Total acceptance detector: Detector size -

lon Electron

Detector needs a Solenoid to measure particle Feamine ’
momenta => Magner(114) e 1 ’
? We need it only for our detector system ! The
accelerator could function without it! =>
Solenoid field needs to be compensated by
accelerator
? Optimize/change a magnetic field - depending
on the beam energy configuration we use ?

Dipole i
Magnet (1 of 3) Beamline

T L
1

N S L Lk

2 limitation in size: for the central detector (in ' "Ny ghlAdAA
R and Z ) due to the radius/length of solenoid @& e WYY
magnhet => fs .;.m.m.lﬂ.n

 how it fits into the HALL?
* how to do assembly, installation,
maintenance ?




The BaBar solenoid

The BaBar superconducting solenoid will be
repurposed for the EIC detector

The warm bore diameter of 2.84m and coil length of

3.512 m
Provides the 1.4 T field

Central Induction

Conductor Peak Field
Winding structure
Uniformity in tracking region
Winding Length

Winding mean radius

Operating Current

1.5T" (1.4 T in ECCE flux return)
23T

Two layers, graded current density
+3%

3512 mmat R.T.

1530 mm at R.T.

4596 A (4650 A*)

Inductance 2.57 H (2.56 H*)

Stored Energy 27 M] planing to reuse the surrounding
Total Turns 1067 combined hadronic calorimeter and
Total Length of Conductor 10,300 m ﬂUX Containment SyStem for thIS

* Design Value mag net

Table 2.3: Design parameters of the BaBar superconducting solenoid. 11



Central detector layout (General purpose detector)

vertex  tracking PID EMCAL HCAL muon
e >
W -
K/m/p —— <>
jets E
! -
Ve b e LPrmiss (B ||

12



Particles
Today more then 200 particles listed in Particle Data Group (PDG)

But only 27 have ct>  1uym r ~
and only 13 have ct > 500pm For all particles we want to measure:
1890 1900 1910 1920
O I R W I 1L1111L11}11111J11Li  Particle momentum
I_ 3 » Origination ( vertex)
1920 1930 1940 1950 - Energy
e S IH - + e +‘+| - ldentification ( Mass) : type of the particle
n et pt nt gt \ y
1950 1960
Illllllllllllll
| The Quark Idea
BEE 1L TP TN tor s, s (botom)
nvozt ﬁ‘zot-\o PV, & (charm) ‘
Koas- 0 =0 ¢y 1960 1970 y ¢ 1980 1990
'Ifn— llJllJLiiLllJJll11114111114111I
E A MA4 44
+ =3
And more ... . (top) J’;;D,}Zggc"c“ i oo
c c s
1990 | 2000 ---¥° 2010 Ec
EEESe AL ESESEEC S ALK
0 4
Vi
R; . Osz. %

13



Why do we need precision measurements of

par"" | C I e mo men'l'u m? For all particles we want to measure:

« Particle momentum
« Origination ( vertex)

0 gty e - Energy
Forexample, D° — 17K (71' K ) - |dentification ( Mass) : type of the particle
-~ : ' i
[ True } : Smearing SAmpearmg Smearing
a2 A sy A
300E _p~ 05% p 3% —p~ 15%
600; + 2501 P i 1407 &
sooé 200~ : 12O§
a00]- 150 1005
r - 80:
3003— 100~ oo
200?— 5°f 40;
100/~ R T R TR S R T VIS b i e 5
: My, [GeV/c?] L T T [G V/c?
R & A R KR R X R F Y Ny ¥ 0. i Lk

|
5 16 17 18 1 9 2 21 22 2.3 2.4 14

My, [GeV/c?]
My, [GeV/c?]
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Tracking detectors (position sensitive detectors)

> Electronically recordable hits/tracks

> Provide precise space point coordinates/trajectory
of charged particles

> Provide momentum measurements in magnetic (B)
field

> Provide angle measurements

> Provide measurements of primary and secondary
vertices

> Particles have to interact with material of detector

10
\ Kolanoski, Wermes 2015

\ ~1/p* without density correction __.——"“/—

« In(y)+const

—(dE/dx) (MeVcm*g™)

1-2MeV cm? g’
(BY),; = 3-4

1

0.1 1 10 1000 10000

By =p/mc

100

Bethe-Bloch formula:

> Provide a multitrack separation
> Provide a particle identification (if possible )

C(Bv, I
A

6(B7) )

5

|

|

> Keep a minimum of material along the path of
particles to minimize scattering and secondary
intferactions.

dE Zl 12211 . 2mec®B%9% Thas 5

Almost does NOT depend on material (Z/A ~ 3)
Proportional to z2
Depends on fy = p/E *E/m = p/m

he same cupve for all z=1 particles when plotted as a
unction o ﬁye)

Have a minimum at fy =3-4

Plateau at high fy '



Momentum resolution

2 2
pr PT ] meas PT /) wms

Position resolution (N>10) :

o(pr) _ o(x) - pr 720
PT meas 0.3BL>2 N + 4

Multiple scattering:

from PDG

\i

o(pT )MS 1

pT \/LXOB

[ pr[6eV]= 0.3+ B [T]e R [m]]

At small momenta this limits resolution
of momentum measurement ...

@»n

I T I T T

T T
example

cannot get better
than this with detectors

s 1pT (%)

............... L. Multiple scattering ]

1~ -~ I

| | | |
0 5 10 15 20 25 30 35 40

pT (GeV/c)

-Optimize material effects (multiple scattering )
optimize amount of material along particle track
(sensitive area (Si), support structure, cables.. )

-Place first plane as near as possible to IP
-P; is linearly better with B-field, but...

-Increase N (but only as 1/ \/ N)

-Improve hit point resolution (cmeas)
17



. For example,
Tracking detectors/Vertex D* - nK*nt

Challenge: How to measure a displaced vertex ?!

-Secondary vertices: D-mesons (lifetime) ca 100-300um
( our hair 50-150 pm) ==

=> Need to place high granularity and precision detector as <:g)l
close as possible to IP (to beam-pipe )

BUT a beam pipe needs to be large enough to allow beam

( with beam halo) to path through ( depends on bunch sizes)

EIC central beam-pipe
-Inner section: 1.5 m Beryllium to minimize multiple scattering

——_
‘__
— —

: Beam-pipe
-2um Gold coating to absorb soft photons from synchrotron
radiation
< HADRONFORWARDCHAMBER ~  CENTRALCHAMBER _ __ _______ ELECTRON FORWARD CHAMBER_
- 129.134 [3280.00 mm] T 154.777 [3931.34 mm) —_— 76.016 [1930.81 mm) -

BERYLLIUM SECTION ELECTRON BEAM AXIS

HADRON BEAM AXIS Top view .

a 354.331 [9000.00 mm] -
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Tracking at EIC ‘ —

Hybrid tracking detector design: Monolithic
Active Pixel Sensor (MAPS) based silicon
vertex/tracking subsystem, the muRWELL
tracking subsystem and the AC-LGAD outer
tracker, which also serves as the ToF detector. o,

I

viaghe

T

7
U

| /
%

= 100 — — — — — — — =
E 90 —— ECCE Simulation, tracking and PID detectors, inactive components of trackers are hldden to hlghtllght acceptance / i
o = FlRd =
80 el . . LS
= . DIRC_ e s o 15
WE" g " BamiAcicAD =
50E— 3 =ES
40 — 3 uRwells &=
= < wd Si-dis - I A Fwd Si-disk =
30 = g Si-sagitta | Fwd AC-LGAD o=
S g 1=3 |f =
o= \M 14 e
= s RS GRS eraet e —— e W R FREIIR s P e e it

00 -150 -100 -50 0 50 100 150 200
z [cm]

5 mr"ad‘ L

o

/

S

Magnetic field to measure momentum and charge

( bended curves)

Particles have to interact with material of

~ detector:

v' Charged particles: leave energy along the
track ( hits) (dE/dx)
v Photons/Gammas- depending on energy (*):
no tracks ( no hits or just a single hit)

19
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Tracking detectors/Vertex

» Low material budget: 0.05% X/X0 per layer

» High spatial resolution: 10 pm pitch MAPS (Alice ITS3)

» Towerdazz 65nm technology (ongoing R&D Si
Consortium)

» Configuration: Barrel + Disks for endcaps

> Inl<3.5 with full azimuth coverage

ECCE tracker layout in ECCE simulation
taking into account support structures

107
210
Q
S , , ,
= 1k 0<n<1 2k 1<n<25 A 25<n<3 2k 3<n<35
=~ ECCE Simulation 2021 =§)- ECCE Simulation 2021.| [ =4~ ECCE Simulation 2021.| =) ECCE Simulation 2021.I
= == YR PWG - == YR PWG = == YR PWG = == YR PWG
—lhasaalas oo B oo o0 o0 ) | BN U B IR | N I B B | R P EPUPE B
. 0 R 10 15 20 e 0 5 l(% 15 i 0 5 10 = 15 e 0 5 10 = 15
Track P; [GeV/c] Track P, GeV/c] Track P, [GeV/c] Track P, [GeV/c] 20
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Tracking detectors/Vertex [wiimm B9 ‘

For the larger/outer layers : ; : >

» muRWell technology is based on the outcome of the EIC Al -2 ‘ - ‘ R
generic R&D (eRD6) — T B L o e

» spatial resolution well below 100 um for curved geometry - P it -

» Large-area detectors possible - cost efficient compared to '

silicon large surface detectors

Preliminary uRwell results from Fermilab test beam

B . A B L L S B U A
3700 T 008/6 | .@800; 2/ ndl 49.04/69 - 1 [ ]
ésoo’ Oy = 50 pm z«: Mm?e:aoso;o: §700 Oy = 43 pm :: 00023077?60‘0;0“1: 004- -1.5 = n<-1 7 004- 1=n<15 7
O Sone 00800 000000 i - g e e - —$— ECCE Simulation 2021;  —$— ECCE Simulation 2021
500 i’ S | s OO 7 - —3— ECCE Ongoing R&D - —— ECCE Ongoing R&D
| . | BkgSgma 01742 £ 0.0304 | 500/ . Bxg Sigma 0.1937 00297 - ] [ aeaaa 1
aoolf X-strip - | Y-strip o [ YRPWG ] i YR PWG 1
| position 4001 position < 9*02' ] 4 9*02'_ ]
300 i ; . Yl Ul ]
| resolution 300-| resolution [ [ ]
200~ 200" ’ ]
100 100+ T : :
% | S e ey %* Ollll 0|1||
05 -04 03 -02 -01 0 01 02 03 04 05 05 -04 03 -02 -01 0 0.1 02 03 04 05
XFit - xMeas. (mm) yFit - yMeas. (mm) 0 Tsrack %)O[Ge\ll?c] 20 0 Tsrack %)O[Ge\%sc] 20

21
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B(]Ckgr'ound/r'ad|a1'|on [ Primary collisions/ionizing ]

radiation
> The HERA and KEK experience show that having backgrounds [ Padatondosainiom “Jior_101> " mgrasaomiosy |
under control is crucial for the EIC detector performance - i3

Synchrotron rad.

> There are main background/radiation sources :
% primary collisions
% beam-gas induced
% synchrotron radiation

Radial coordinate, [cm]

LL L

—t | —— - ,
800 400 300 200 -100 0 100 200 300 400 500
Z coordinate (along the beam line), [cm]

> The design of absorbers
and masks must be
modeled thoroughly

-> backward EmCal: ~250 rad/year
(at a “nominal” luminosity

Beam-gas event

600

USRBIN EIC-VBT-EP-PP-OBBIZOQ[ SIOW neUtronS ]

0.01

400 = 0.0001

1x10°®
200

1x10%

X/cm
o
|

1x10°10

——

-200 1x10-12

oLe
-400 1x1

1x10-16

-600 I L 1 L 1
-1000 -500 0 500 1000 1500 2000 2500 3000
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Particle Identification vertex  tracking PID EMCAL HCAL  muon
Limited number of "stable” final state e >

particles: only 13 have ct > 500um ) -

* Electrons /positrons K/n/p —— A

* Gammas

« Jet/Jets _é_,_____—-——-—-——';‘s:f

- Individual hadrons (7%, K+ p) Jets

* Muons (absorber and muon chamber) —

* Neutrinos ( missing PT in EM+HCAL) H g _

 Neutral hadrons (n,K ) (HCAL) v Prmiss

 Electrons: EMCAL cluster + track pointing to cluster

* Gammas (y): EMCAL cluster, no track pointing to cluster

« Neutrinos (v): missing P

* Muons: track, min. energy in EMCAL, min. energy in HCAL, track in muon det.

* Charged pions, kaons and protons from each other -> Cherenkov detectors o



Short lived particles: hadron identification

Example: charm -> (fragmentation)-> D-mesons ->(decay) -> hadrons leptons...
Invqman’r mass reconstruction D* - 7-, DO

¢ . 7K+

x| Q° " \/ K- ol K™ K~
. + - + — +
> h=cb A . \/ b q/ e ¢

o : : : :
:: Dt 1 DY . Dt 1 D =
Gx)

A

* high combinatorial background without PID

m(D°) m(DO) m(D*) - m(D%)= m (7-)

x10° " 2/ o 0.3624/8
2000 g Constant 3264+ 1484 5 140 Constant $
A no vertex 13804000 & v o1t 0008
L igma 0.01854 + 0.00221 120 Sigma 0.001498 = 0.000354
feoof no PID Do D*
1600k . E)g;ua 100
_ I 0
1400
B 1
L 60
1200
[ 40
1000_—
20
800 \ : h
15 T8 17 18 19 2 21 22 23 24 157617 18 19 2 21 22 23 24 25 b=z o om0 02
K #/K mass DO (GeV) A mass D* (GeV)

24
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Individual charged hadrons(z, K, p)

DO = 7K mass spectrum, on the top of DIS background

2000} N 100% PID In order to select/identify
I L % PT . pe .
wnf N No vertex ‘:‘; No vertex specific reaction ( for
oo : w example, DO production)
1aoot 0 one need to apply
1208 certain criteria/cuts to
ool _ w extract such events from
100— . .
” the minbias events (DIS
15 16 1.7 18 19 2 21 22 23 24 15 16 1.7 18 19 2 21 22 23 24 15 16 1.7 18 19 2 21 22 23 24
M, [GeV/c? M, [GeV/c] M [GeV/c background).
40000 10000 —
No PID i 80% P
No PID 25um vertex 8000:— 25um \]/:eDr-'fex

100um vertex

6000

4000

2000

19 2 21 22 23 24 05 16 17 18 19 2 21 22 23 24 0516 17 18 18 2 21 22 23 24
m, [GeV/c?] m, . [GeV/c?] m,. [GeV/c?]

25



Particle identification: chargéd hadrons(z, K, p)

0[GeV] 5 10 15 20 25 55 70
5 REER I n =7 MC —7
8 /T[ _ o= J
Bl m— N / s / 9
> | 2 =
Y 7
o e/m | g / - / .
< TC/K ! .E 10; [ ] " _5102
L | _
o e/m /'10
< n/K
_g K/p 1 4 =, A 1
< 8 - - - 6 }f

mRICH DIRC B dRICH- WMdRICH- psTOF(20ps) ~ dE/dx

aerogel C,Fe i7" psTOF(10ps)

Cherenkov detectors, complemented by other technologies at lower momenta (TOF)
Need 47 coverage

26
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Particle Identification detectors

PID technologies are based on the outcome
of the EIC generic R&D (eRD14)

-

——

N \\\\\\\\\\\\\ ///////_/Z/

IIIIIIIII

>

Backward: Short, modular RICH
(mRICH)

Barrel: Radially compact with
flexible design high-performance ;
DIRC . =

(hpDIRC) __,____2
Forward: Double-radiator RICH = TOF J
(dRICH) .
TOF (*) AC-LGAD based time-of- ||' ||‘
|| II

flight (TOF) system for hadronic

PID in momentum range below the
thresholds of the Cherenkov
detectors

27



Particle Identification de’rechs

Backward PID

Compact version of a
conventional aerogel-based
proximity focusing RICH

/K upto 10 GeV

5 [ > oeln
§ F oi o .
= 4° o .
2 i
= C o .
5 L
[-" Q.
& °F o
i o:
- (o}
2 o
B o
I~ [e]
o, =25mrad %, - ECCE s:mulatlon
" Pixel size = 3x3 mm’ OoO :
| ECCE simulation 2000, e :
0‘....|....|..‘.|....|....|....\....Ol‘?o.o.olqomu..i

0 i 2 3 4 5 o6 1 8 9
p (GeV/e)

separation [s.d.]

g O N o©

[ A I O B

Barrel PID

0 Radially compact ( ~ 5cm)

0 hpDIRC with better optics
and <100 ps timing (/K up
to ~6 GeV/c)

Fused silica Fused silica
prism / bar
Y,
4 /’
~~~~~ /,/, ((\@
’ QQ
N

Photon sensor

Focusing lens

—+— /K @ 6.0 GeV/c
i e/n@1.2GeVic

ECCE simulation

IIH{IlIllIIIIIII[IIIIHIIIIIII]HIIIII

TR L L TR TS SN TN AN S TN N N S TN T N TR S W |
20 40 60 80 100 120 140 160
polar angle [deg]

Separation (s.d.)

T. Horn ( DPAP meeting)

Forward PID Q C C 6

Use a combination of aerogel and
C,.,F,, with indices of refraction

matching EIC momentum
the forward endcap. Simil

range in
ar to LHC-

b, HERMES, JLAB/Hall-B, ...

n/K upto
50 GeV
Incidence Angles:
A 20deg
; & 15deg
10 i |V sdeg
Aerogel Gas »
1 LN
ECCE simulation
L N R T R TR
Momentum (GeV/c)
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Readout: PMT vs SiPM

PMT
Incoming Photomultiplier Tube

Photon\ Window
Photo-

Focusing
Electrode

\'Ioltage Dropping
Resistors

Output

Figure 1 Meter

Power Supply i

.""!\ {

-

L)

Good linearity in large dynamic range
Very sensitive to the magnetic field

Typical Gain =10* — 10’

Compactness
Single photon sensitive

Huge dark noise rate ( temperature dependent)
> 100kHz/mm2 @ 25C

29



Timing detectors: AC-LGAD P AC-pad #1

Start detector Stop detector
Ltor
ml> m?2 s
1> 12
1
== = 1__
I — Jﬂ
10
L
(m2-m,2) dm  dp o dt
1 2 p— + Y (_
m P t

detector (10-20 ps)

> In barrel - limited space Lyge <1 m

> No space for "Start detector” - 10

> Need to know vertex position more
precisely to measure L_TOF precise
(total particle length/curvature)

> high timing resolution of TOF

AC-pad #2 AC-pad #3

resistive
n-cathode

For TOF or Far-Forward/Backward area
Detectors can provide <20ps / layer
AC-coupled variety gives 100% fill factor and

potentially a high spatial resolution (dozens of

microns) with >1mm large pixels

1400 - - : 250

200/100 D data

G=17 | 200 | | =— fit
oy = 6.2 pm |

200/100

1200+ | —— G-—17

1000 |

800

entries

600 -

400 |

200 ¢

0

oy = 22.3 ps 1

-40 =20 0 20 40 =200 -100 0 100
ZTrec — Treal, KM trec — Lirig, PS

200
30



20

Additional e- ID L GEM based TRD

e To improve e-identification for leptonic/semi-leptonic decays. . /
In addition to Calorimeters and Cherenkov detectors in the hadron-

10 Rt
endcap considering TRD. o A
e GEM -TRD/Tracker : o = e
» eln rejection factor ~10 for momenta between 2-100 GeV/c from a y: i /
single ~15cm thick module. - . T
00 IIIéIIII1OJII115JMI120IIII25IIIJ3O
Radiator length, [cm
Thickness [cmf
pion /elecfron
Radiator / / Entrance 2. mm
window o = = = = s 8
- ‘/‘ = :_ ' _ drift c;istance ' : ]
Primary _gh %_e,. 3 | |
dE/dx 0 TR g 3°F
clusters photon Xe_gas —‘g-
mixture = o B & = = s g
I Amplification - B
i (_SD__ —"M—-—‘—r‘—e—-—
/ / Readout g F
pion electron ERg

e Very precise Tracking segment behind dRICH.

e Could be used as the EIC detector upgrade o



Why do we need a calorimeter ?

20
X
o -
. = Example
v Use momentum measurements for charged particles: 215
E2 = (pz+m?) S |
> Need to identify a particle (or mass): not always N
possible. § ’g \
> Need to measure momentum precise: not always = "-,. <AL —
possible. 5 1rackind ]
< Momentum measurements are getting worse with A . /;ng:s:b
| | D P et BN YR
increase of particle momenta ( ~p) 0
. p , 0 20 40 60 80 _ 100
< BUT, Calorimeter measurements are gAe‘gmg , p(GeV)
better with increase of the energy ( ~

)
VE
v Need to measure neutral particles! Calorimeter is the ONLY

detector for them.

32
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. We need 1kCal to change a
Calor'|meT r'y temperature on1 C for 1
Sk, o= ~| liter of water
v" In nuclear and particle physics calorimeter refers R =
. S-SR =|  1kCal ~ 100002.6110% eV
to energy measurements of particles. = :
s = ~2.61 ¢ 1000 TeV
By Klaus Pretzl\\/

v' In calorimeters the process of energy measurements is destructive:
we must completely stop the particle in our detectors to measure its full energy :

Unlike, for example, tracking chambers ( silicon, gaseous, etc) , the particles are no longer
available for detection once they path through a calorimeter.

With just few exceptions: muons and neutrinos penetrate through with a minimal interactions

= Calorimeter is the outermost detector
v' Calorimeter measure charged + neutral particles
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Calorimetry at EIC

Close to 47 coverage

calorimeters need to perform

» Scattered electron kinematics measurement
» Photon detection and energy measurement
» e/h separation (via E/p & cluster topology)

» TI0/y separation

EMCAL technologies are based on the
outcome of the EIC generic R&D
(eRD1)
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EIZCTFOm09n3T|C Calorime-rer- T. Horn ( DPAP meeting)

Backward ECAL Barrel ECAL Forward ECAL
(EEMIC) (BEMC) e AL (e

Homogeneous calorimeter Homogeneous, projective calorimeter Highly-granular shashlik sampling
based on high-resolution based on SciGlass, cost-effective calorimeter based on Pb/SC
PbWO, crystals alternative to crystals .

Composite
External e (Outer)
& cooling Flange of the

4M Tower
Composite
(Outer)

8M Tower
Composite
(Inner)

4M Tower
Composite
(Inner)

Illll T T T T 17TT1TT T T

ECCE simulation
single particles

Figure from the EIC EEEMCAL
Consortium design report

10*
Backward ECAL

n [-4..-1.8] .

&M

T rejection

Barrel ECAL Forward ECAL

[-1.7 ..1.3] [1.3..4]

o/E = 2.5%/VE+1.6%* 7.1%/VE+0.3%

o/E  2%/NE+1%*

*Based on prototype beam tests
and earlier experiments

10?
*Based on prototype beam tests and earlier experiments

L ECCE EM calorimeters provide the required coverage,

meet the physics energy resolution, and pion suppression
in all three regions (endcaps, barrel) 35
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Crystals/Glass

» High-resolution PboWO4 (PWO) crystals are available from two vendors
 SciGlass 20cm has been produced reliably; We tested a 3x3 20 cm SciGlass prototype detector in beam ~
and measured its performance as per simulation (ongoing R&D EEEMCAL consortium, eRD105) & *

» Received the first polished 40 cm SciGlass with more on the way -
» We have an SBIR phase-ll to start large-scale production (40+ cm, rectangular and projective shapes)

Example: SC1 glass

2018: 1cm x 1cm x 1cm

PWO: vendor characterization

35 RSB e

- CRYTUR

2019: 2cm x 2cm X 4cm

2020: 2cm x 2cm x 20cm

Light Yield (pe/MeV)

[ c 3 < 2 ¥

» 24 - 2
3 W
i & = o

Dec 2020: 2cm x 2cm x 40cm ( 10-20 X,)

Light Yield (pe/MeV)

S RS R RV B B
%000 5050 5100 5150 5200 5250 5300
Crystal ID




Sampling calorimeter: EMCAL

e Well established technology
» HERA-B, ALICE, PHENIX, PANDA, ...

e Medium energy resolution ~7..13%/VE
e Compact (X,~7mm or less), cost efficient

® Pb/Sc shashlyk

Fun4All-EIC Simulation
Geant4, truth energy deposition
Total Rad Length = 20X

1/56X,: A E/E = 5.92%/VE ® 1.05%

0.14 * =
a ¢ 1/4X,: A E/E = 6.72%/VE @ 1.30% -
I 0.12 ¢ 1/2X,: A E/E = 10.64%/NE ® 1.67%  —]
L\g_ 0.1 & 3/4X,: A E/E = 13.68%/NE ® 2.06%
D & 1Xy: A E/E = 16.19%/NE ® 2.12% .
= -
L 0.08 =
<1 -

0.06¢ =

0.04

0.02|

[ 1 I 1 1 1 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I

o

5 10 15 20 25
Geant4 truth electron energy (GeV)




Sampling calorimeter: HCAL Forward HCAL (LFHCAL)

Barrel HCAL (OHCAL+IHCAL) ~ Integrated ECAL+HCAL longitudinally
e N ] ] OHCAL segmented sampling calorimeter based on

- -

Fe/SC, W/Sc and last segment W (tailcatcher)
| HCAL gg:‘n‘;m 8M tower conposit module (inner) -20cmx 10 cmx 2 m

-85 cm x 5 cm LFHCal towers

EMCAL Oute
e =200 1.¢cm x 1 cm FEMC towers

4M Tower
Composite
(Outer)

120cm

4 mm scintillator tiles
1.6mm Pb sheets

16mm thungsten plates
4 mm scintillator tiles
16mm steel plates

BM Tower
Composite
(Inner)

P m

T T T l T T T | T T T I T T T I T T T I 4M Tower

e | YR Requirement OHCAL ECCE simulation {  “{men” -
w | OHCAL: o/E = 336/NE ® 16.8 single n* |
- — OHCAL TB: o/E = 75.0/E ® 14.5 L e
e YR Requirement LFHCAL f =
100— "™ LFHCAL: ofE = 33.2/(E @14 X | b 8M LFHCal Scintillator Tile i N 8M FEMC Scintillator Tile - Inner
I 5F” i Barrel HCAL Forward HCAL
i S |
i 50— < .
gy Ao | T
calorimeter based | e i
on Fe/SC tiles | B _ o/E ~75%/VE +15%* ~33%/VE +1.4%
L ',.&--'Mw‘ A
1 1 1 I 1 1 1 I 1 1 1 | 1 1 1 I 1 1 1 I depth ~4-5 xl ~7-8 ;\II
% 0.2 0.4 0.6 0.8 1

1/ \E (GeV) *Based on prototype beam tests and earlier experiments



Calorimeter for particle identification

vertex  tracking PID EMCAL HCAL muon

Electrons: track pointing o cluster in EMCAL
no track but cluster in EMCAL e -
Neutral hadrons: no tracks, energy in HCAL

Neutrino: missing energy (E+, p1) jets——

Muon: track, minimum energy in CAL -

Charged hadrons: track+ energy in HCAL y o
(ratio EMCAL/HCAL) '

Problems (misidentification):

hadron electron

e/hadron separation:
hadrons could develop shower in EMCAL

70— yy: cluster in EMCAL
Not possible to separate charged hadrons

( K.p)

Erik Maddox

il
I
1]
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Material budget

O Low material budget

O Minimize bremsstrahlung and conversions for primary particles

O Improve tracking performance at large |n| by minimizing multiple Coulomb scattering

O Minimize the dead material in front of the high-resolution EM calorimeters

10t

100

107!

Radiation Length [X0]

1072

1073

-1 0 1
Pseudorapidity

ECCE Simulation
Forward LHCal

Forward EMCal

Barrel HCal

Dual RICH

SC Magnet
Active BCal Support
BECal

DIRC

Barrel AC-LGAD

Inner det. spt./service
Backward EMCal
Backward AC-LGAD
mRICH AeroGel

Forward AC-LGAD
Forward/backward silicon
Barrel muRwell

Barrel silicon
Au-coated beam chamber
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EIC interaction region layout (IP6)

2.0

1.5

Top view
4 Electrons

Detector

Hadrons

>

S

2
O o
m m

D1EF 5
Q2EF_5
Q3EF 5

d ~9.5 m around the IP is reserved

for the central detector
4 Crossing angle provides beam

separation and space for detector
placements

4 Apertures of FFQs and dipoles
are designed to allow forward
going particles to go through

%_cc ), —
mo w
Exit window Si ~
1-0 7 Qo (@4
Collimator Ny
Magnet\
= Lum. detectors \ —
3 —— o+ i far-forward area
O~ Q-I.I_"
x 0.5 - o g Su
m H%
O T \
O a
N [V
o a
Forward spectrometer oo ZDC
— (in BO) g
— ~—
0.0 - g g .
far-ba g g
Off-momentfim detectors 1 @, .
] Roman Pots I8
[@)] Mm m
5’ Off-momentfim detectors 2 o
—=075" ——
1 1 1 1 1
-40 —-20 0 20 40
z (m)

Q Far forward and far backward detector components are distributed along the beam line within =40 m
4 Design should be able to operate with different beam energy and high luminosity
d We are keeping a full detector integration in sync with the accelerator design from the early stages on



Far-forward detectors ( hadron-going)

Geant4 implementation of IP6 Far-forward area

Zero-Degree Calorimeter

BO Silicon Tracker and Preshower ..

m

IP Particles Angle [mrad] P! Ppoamr)
* BO-tracker Charged particles 5.5-20
BO-dipole Photonts ( tagged)

Off-momentum Charged particles 0-5.0 0.4< xL< 0.65

Roman Pots Protons 0% -5 0.6 < xL< 0.95
Light nuclei (*)100 cut

ZDC Neutrons 0-4.0 (5.5)
Photons
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BO -dipole

BO-detectors

BO —dipoé

= Dipole field 1.3T: for momentum reconstruction. Design still
ongoing (most likely BO will be shorter 1.8m -> ~1.5m)
= B0 placement - after HCAL
4 Limited space
4 Access to BO-detectors only from one side ( after
opening HCAL)
<4 Vacuum pumps
<4 Beam-pipes: crossing angle

> B0 placement: high background area => high

granularity detectors needed in this area
43




BO'dZTCCTO rs (5.5<60<20.0mrad) (4.6 <5 <35.9)--large |t| value

« Create zero field line at electron beam axis. BO -dipole

« Warm space for detector package insert
located inside a vacuum vessel to isolate
from insulating vacuum.

INNER CRYOSTAT
DIPOLE COIL

QUAD COIL

BEAM TUBE = = HADRON. _ > Beampipe:
 Near IP - common beam pipe
* Beams are separation into two independent
beam-pipes in front of BO
 Low-mass exit window for far-forward particles

\6 Large exit flange for forward spectrometer C

0
Central -beam pipe => BO detector mechanical integration

| Pumping port .
\m\\
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BO-detectors

(5.5 <60 <20.0 mrad)

m

v Tracker for charged particles: High granularity detectors needed in this
area with layers of fast-timing detectors due required p;, beam effects, high

background.
v BO-dipole length is ca 1.5m

v Combination of MAPS for spatial resolution and AC-LGADs for timing spaced
evenly by 30cm inside (~20 cm in diameter)

ApT
pT
o

0.09

0.08

0.07

0.06

Local Y Coordinate [mm]

0.05

0.04

0.03

Transverse Momentum Resolution,

0.02

0.01

o IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII

(=]

Detector + beam effects Detector Resolution Only

o BO Detector, p = 100 GeV/c ®  BO Detector, p =100 GeV/c

[m] BO Detector, p = 41 GeV/c m  BO Detector, p =41 GeV/c

""’"H"Of“tmo

Local X Coordinate [mm]

1 1 1 1 1 1
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Transverse Momentum, P, [GeV/c]

Il Il
1.8 2

For photon detection: A simple
photon tagger or EMCAL ( for energy
measurements) will be needed. As an

example: for y + y from 7" separation
to clearly isolate u-channel DVCS

= PObWQO, (11.2 r.l.) behind the
tracking layers: each 10 cm long with

a surface area of 2x2 cm?2 (ECCE)

= or 2 radiations lengths of Pb
converter, followed by a layer of AC-
LGADs (ATHENA)

=> Work in progress 45



RO man-POTs 25.6 cm
0.0* (100 cut)<0<5.0mrad o0(z2) =4/ f(2)) 51 8em
Geantd setup: 0(z) is the Gaussian width of the beam, e !I§
Beam 6.4 cm

S5mrad particle cone

p(2) is the RMS transverse beam size.

€ is the emittance.

OFFM

One Layer

- —BOttom — -

v Movable ( as close as 100 away from the beam (depends
on beam energy and beam configuration: high divergence
or high acceptance).

v Move out during an injection.

v RPs needs to be integrated into the vacuum system

¥ Insertion from top and bottom - need to minimize space in
front of ZDC.

v Preliminary concept of a mechanical setup.

v Very close contact with accelerator to avoid negative
impacts on the machine operation
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Roman-pots resolution Alex Jentsch

Angular divergence

P
* The various contributions add in quadrature (this was checked -
empirically, measuring each effect independently). _— i R
These studies based on - T
APt totar = \/ (Apt,ap)*+ (Apecc)?+ (Apepxi)? the “ultimate” machine T
formance with
\—Y—) (—Y—) Y e ;
Angular divergence Primary vertex smearing Smearing from strong hadron coollng.
from crab cavity rotation. finifci plxel 7siize.
S, T Primary vertex smearing from
_ Ang Div. (HD) | AngDiv. (HA) VtxSmear 250um pxl crab Cavity rotation
APt totar [MeV/c] - 275 GeV 40 28* 20 6 11 26
Ap; totar [MeV/c] - 100 GeV 22 11 9 9 11 16

* Beam angular divergence

* Beam property, can’t correct for it — sets the lower bound of smearing. -— - -

* Subject to change (i.e. get better) — beam parameters not yet set in stone

* *using symmetric divergence parameters in x and y at 100urad.

* Vertex smearing from crab rotation

* Correctable with good timing (~35ps).

* With timing of ~70ps, effective bunch length is 2cm ->.25mm vertex smearing (~7 MeV/c)
* Finite pixel size on sensor

* 500um seems like the best compromise between potential cost and smearing

APy totar [MeV/c] - 41 GeV 14 - 10 9 10 12 w w y /

\
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Alex Jentsch =

Forward proton acceptance : Y

P
5GeV x41 GeV 10 GeV x 100 GeV 18 GeV x 275 GeV
pto pto pto |
2 F Entri 2 Enties 20000 2 F Entries 20000
C450 ﬂ.rl M:';':s :gggg <450 P M:Z:s 0.3848 C450F M:::s 0.388
3400; ]Jl RMS _ 0.1799 Q400 j/ . RMS _ 0.1796 3400; N RMS _ 0.1802
3505_ —— Monte Carlo l.l.|350 P 17." —— Monte Carlo 350; / ]Jl — Monte Carlo
300 é — RP nominal 300 J‘ Ifl RP nominal 300 5_ Fl 1.[ ~— RP nominal
g E Iy 1
250F % 250 | : R 250 | | | B
200F 200 200f- N
150F 150 150F u
100F- 100 100F- Ilq
50F N, 50 50F- "y
07- IIIIIIIIIII\T“A 0. a o_n JlllA]lllllllll"\‘L.Y‘VJAlllAlll
0 02 04 06 08 1 12 1.4 0 02 04 06 08 1 12 14 02 04 06 08 1 12 14
VCS proton Pl [GeV/c] - DVCS proton Pr [GeV/c] DVCS proton P' [GeV/c]
Need both detector y
systems together here!
. . . High Acceptance: larger f* at IP, smaller
High Divergence: smaller f* at IP, but bigger 5( 30m) > | gl ﬁ. '” b
i . z = 30m) -> lower lumi., smaller beam at
B(z = 30m) -> higher lumi., larger beam at RP RP ’ _
x_y_image_RP - T 30¢
50 x_y_image_RP X_y_lmage_RP E r "
g F H. h Entries 11748 .§15(;_ H. h ;n{ri::ag;:; .g. 25; 15 GeV on 50 GeV 10
@ Ig m:::x 022'2321 Er 18 Meanx 1.7 (] E
oo . xy . £ F Meany 0.1772 E) F
s | Divergence Moy oo g0 Acceptance AMSX 5834 c 20 10°
s r § r RMSy 1338 © .
sop 10 50 " g, 151
[ F 12 'E u 15 GeV on 100 GeV 10?
O? 8 0:— 10 ﬁ 10:_
i 5 g s & 15GeVon250GeV | |
-Sor -so0F- R £ 50
C 4 C - C :
_100[- -100~ N o .. P i )
: ~5 em 2 : 5 & % s0 100 150 200 250

Sty bl o Bl T o e proton momentum [GeV/c]

x coordinate [mm] x coordinate [mm]

48



Off-momentum detectors

ZDC
(0.0 <6 <5.0mrad, (n > 6)) RPs ()

OFFI\N
p

> Protons that come from nuclear breakup have a
different magnetic rigidity than their respective
nuclear beam (x, <1)

> This means the protons experience more bending
in the dipoles.

> As a result, small angle (6 < 5mrad) protons from

these events will not make it to the Roman Pots,
and will instead exit the beam pipe after the last
dipole.

> Detecting these requires “off-momentum
detectors”.

> Movable, beam pipe integration.

B1pf
BOpf P
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Off-momentum detectors

(0.0 < 6 < 5.0 mrad, (1 > 6)) 2DC
T RPs [

ep-> (K) >e’+A+X
L, p+ 77— (Br~64%)

> Detecting Lambda’s decays in the target
fragmentation area is very hard, due to a
very large decay length (meters).

> Would require in addition detection of
negative charged particles (pi-) at the
OFF-momentum detector location
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Zero Degree Calorimeter (ZDC)

For detection of neutrons and photons

Acceptance:

0<6<5.5 mrad

(Limited by bore of magnet where the neutron cone has to exit)

High resolution ZDC, based on ALICE FoCAL

EMCAL HCAL

Photons

: Central Detector |

*note: space for readout may extend the longitudinal length.

Total: 60 cm x 60 cm x 162 cm

40.2 cm 48.0 cm
-— —
~2 AI ~ 25)\|

Crystal (PbWO,) W/Si calo. Pb/Si calo. Pb/Sci. calo.
+ Silicon Pixel layer 3 Pixel layers are inserted.

—— Generated

—2ZDC

Spectator Neutrons
e+d collisions
18x110 GeV/n

10

M IR P
15 20 2
Polar angle, 6 [mrad]




ar-nackward (electron-going) region

2.0 TOpVIeW 8106E| T T T T T T T T 1 T T
g — All quasitreal electrons
Hadrons B Electrons = Tagger 1
Lo & : 2 108 — Tagger 2
s 0% & o —ECAL
) [11]

Detector

"

1 0 - Exit window

10°

Collimator
Magnet%

Lum. detectors

(m

X

0.5 1

NS

S

<5

a‘mQ\ 2
o5 10

0EF_5
X
D
2
||||||I'II ||||||I'I] ||||||I'll |||||I1Tl T T T
§
.--""-:‘
i S
—

10

Off-momentum detectors 1J '
Roman Pots

BRERRLL
E

Off momentum detectors 2

Vs

52

~fartbackward area far-forward- are s 6 4 2 o0 2 '46'22
log, (@)
—;10 —120 ’ 6 ZIO 4IO
z (m) FIG. 16: Coverage in Q) for tagger detectors and ECAL.
> This area is designed to provide coverage for the low-Q2 events (photoproduction, Q2 <~ lGeVz).
Need to measure the scattered electron position/angle and energy.

> And luminosity detector (ep -> e’py bremsstrahlung photons)
> Beam-pipe design ongoing




i LUMINOSITY MEASUREMENT
t t : ' VIA BETHE-HEITLER PROCESS:

dipole max”

IP dipole positron in UpP

FV | photon >|: _ max > | PHOT = ‘ =

~ electron
_length

-~
~
=

~
~
=~

exit window DOWN | S N R e

min
B2BeR ’

Similar to ZEUS/HERA concept | T
S B ] Taggerl| =

Goals for Luminosity Measurement: N STEn T

Integrated luminosity with precision dL/L< 1% L

(> Luminosity measurements via Bethe- )

Heitler process
> Photons from IP collinear to e-beam
> First dipole bends electrons
> Photon conversion to e-/e+ pair
> Pair-spectrometer
> Synchrotron photons collimation scheme
\_ heeds to be further refined )

i Tezcer2 I
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Electron polarization measurements

Compton polarimeter:
* Used to determine a polarization of electron beam

* Incoming photons scatters off electron

Compton Scattering

SZTUP ln Ha” C Electron

Detector

Dipole

Scattered
Fabry-Perot
Optical Cavity

Backscattered
Photons

\/\/\/\/\/\;\/\}\4\/\;

Photon detector ( calorimeter) a matrix of four
crystals of Lead Tungstate (P bW O, )

~1% electron beam polarization measurements
Simulation for EIC is ongoing

Dave Gaskell
Josh Hoskins

scintillating crystals with dimensions of 3 x 3 x
20 cm to detect the backscattered photons.

Electron detector ( Diamond micro-strip detector )

The detectors are made from 21 mmx 21 mm x 0.5
mm plates of Chemical Vapor Deposition (CVD)
diamond . Each diamond plate has 96 horizontal
metallized electrode strips with a pitch of 200 yum
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Hadron Polarization (RHIC, EIC) Elke Aschenauer

Vadim Ptitsyn

Existing p Polarization in RHIC achieved with “Siberian snakes”
* Near term improvements will increase proton polarization in RHIC from

60% to 80%

Polarimetry exploits left-right asymmetry in elastic scattering due to spin orbit interaction

—
\

v Ultra-thin carbon ribbon target
~ 100 mono-layers think, 10um
wide

Si strip detectors for recoil carban
(10F. E.)

T T
pC-opC NT - N¢
30cm g .
P = Eir B Ny —Ng Polarized Rec0|l
A, N, +N, proton carbon

* Proton-Carbon Polarimeter (pC): very fast and high precision, but needs to be normalized
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Hadron Polarization (RH‘IC, EIC)

K. Oleg Eyser

hydrogen target

-
-
———
-
e

A
E 75 cm .
.
E
/ recoil
I
Pbeam L 2 -
o——@- s Hscatr
Sy

* Polarized hydrogen Jet Polarimeter (HJet): absolute polarization, but slow.
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Hadron Polarization Elke Aschenauer

Hadron polarimetry at EIC BUT EIC is not RHIC!

At RHIC:
* Polarized hydrogen Jet Polarimeter (HJet):
absolute polarization, but slow.

* Higher bunch frequency and current.
* Background?

* Proton-Carbon Polarimeter (pC): very fast and 1320 bunches —> bunch spacing 8.7 ns
high precision, but needs to be normalized [Tvse| —>bunchlength 6.6 cm
e g2 —
8 go:ToF(;ls)' ,0'?3, - IO.?7| o '1{0' o '1%3'“?" '1;7 10° §2105 ~ |l‘:l1l \ \ \ \ o
805—65 '-200* e .;!:‘?.i.i..‘\\\ \\ \'u N R G o g
705— I D i - "'::Illill't.\\\\ \ e Y T 10
soE— 190#" i']»lllil'l\'\ \.\ \\ \\-. T T
E 180 '”Q;ii'ii'.‘\\"\'\.\\ \\ e
NN |
3 160 .,'“ LA T e -
e 150 '1 l"\\\\\ \\
O T R %0 Ekin (MeV)
LI Amplitude, ADC |
New detector technology (fast ~ 10ps Si?)
Reduce TOF ?

Polarized D and He-3 -



DAQ: Streaming Readout A

'r'chi’rec‘rur_e

DAQ

3

}

-

Detector FEB | FEP

(Front End Board) | (Front End Processor) |

| I

[ BW:-O(100 Tbps) [ BW: O(10 Tbps)

I I

| |

| L~100m I

ASIC— | fiber |
3 | 1
T T

I

FPGA

I
I
I
I
t
I

L]

LVDS ~ Sm

&)

.
&

Saitch /
Server/ Swech J
Link- Server
Exchange: Processing
Readout

Analog ~ 20m

30 July 2020

EIC Yellow Report — Readout and DAQ

(Data Acquisition)

Configuration & Confrol

Power )
Possible at EIC as data rates

manageable
(500 kHz, O(100) Gbps)

Global timing, busy & sync
Beam collision clock input

| Goal: O(0.1 Tbps)

/
N

<

Monitoring

Power Supply System
(HV, LV, Bias)

Cooling Systems
58

FJ Barbosa, K Chen, J Huang



Summary

» The EIC detector had a physics-driven design
2 It is a general purpose detector.

2 It is also a balance between the reuse of equipment, the mature
state of art technology and detector technologies that are at the
near-end of an extensive R&D effort

» Al was used to optimize detector choices, locations, and materials.
» We are continue to improve the design on the way to CD2
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Following movies are made by
Miguel Arratia and Sean Preins

Backup






~ ‘ Detector Menu | EXxit Program
Menu: "E" ’
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_e
Why do we need a magnetic field?

-bending radius depends on a particle momentum
-charge (right, left) R

% WHN

TRy
i \III R \\\‘.

, } il \\v’

[

I

p[6eV]z 0.3¢ B [T]e R [m]

Red: Geant hits —
: dipole Itk
q<0 Blue: reconstructed tracks p H Ng
v B
—_ (O
q q=0 \_“'
q>0

Electron in a magnetic field at

the Bevatron, 1940
64

Yulia Furletova



Energy loss

Most tracking detectors are ionization detectors

2 12 -5 -

dE —KZ 22 11 2mec25272T7nam
iz |/~ [A° |2

same curve plotted vs.

momentum for different

. * Examples of typical energy loss at minimum
particles => could be used

ionizing:
for PID v 1 meter air: 0.22 MeV
e v 300um Si:  0.12 MeV
/ vV Immiron: 11 MeV Cpeak
LLandau
% ) ) distribution
* Energy loss is a stochastic process (app of energy
14 . . . . . OSS
y described by Landay distribution) with
o
= K P " )
[Sa)
= infinitely” long tail. e enerey ta
' P '-tT ) energy loss
prolll)lzﬁ:le lelxllee‘::v
loss loss
10 . 1
0.1 1 10 100 65

Momentum (GeV)



Why endcaps and forward areas are important at EIC?

; e
10%¢
Al C
ZW &
- sl 0<E'<20 GeV (2 GeV steps)
p / A q 10 2_ ............................. 20<E'<100GeV(5Gevsteps) ......... .............
p remnant | (10100 GeV)
1 02 §_ .................................... S N
- ~\
Electron- ey Hadron- : e""jb? < //
endcap endCGp 10 §_ ................................................................................ /// ?//

Far- n=0 - - Q // o /] §
ar P T e F _ - \\’/\A ¥ }'/ \\”Q‘/ E
backward 1 /n=0.88 ar 1 e ........... // /// o

Electron 0=45° forward - e -

p=10—"=2.44 Hadron i /7 -
0=0°—>1)=0 1. e <
1 O = /7 4
- / //
10° 10* 10° 107 107" 1
Pseudorapidity:

Transition area from DIS to Photoproduction ( Q2<5GeV )
[ N= - In(tan(6/2)) ] a6




Why endcaps and forward areas are important at EIC?

10%
Al -
Ot
3L
10 = 40 <Fh <200 GeV (10 GeV steps)
o remnant N (10 x 100 GeV) | :
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- Diffractive/exclusive physics in the Far-forward area =35 12 n=1.7 n~3.5 .



Readout: SiPM

reverse bias voltage
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https://www.hindawi.com/journals/js/2020/2068280/

https://link.springer.com/article/10.1140/epjp/s13360-021-01183-8
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