

HUGS2022

Yulia Furletova (JLAB)

3 June 2022

Outline

- Detector acceptance, location, size, global integration
- Central detector:
 - Tracking detectors, PID, Calorimeter ...
- Far-forward/backward detectors
- Background

Materials for slides come from multiple EIC community efforts (Yellow Report, EIC Project, ECCE/ ATHENA proposals, etc)

Number of events

$$N = \sigma \cdot L \cdot \epsilon \cdot a$$

- Where L is a luminosity
 - $\sigma\,$ is a cross section
 - a is an acceptance,
 - $\boldsymbol{\varepsilon}$ is a detector efficiency

Statistical uncertainties:
$$\sim \frac{1}{\sqrt{N}}$$

$$(d\sigma_{measured}^{tot} = \sqrt{N_{obs}} \frac{\sigma_{measured}^{tot}}{N^{obs}})$$

 \checkmark As high luminosity as possible

 \checkmark detector efficiency at 100% => no dead-time for detectors

✓ full acceptance (100%) => detect all particles

Acceptance and event kinematics :

fixed target vs collider ?

COMPASS

Target (different kind

(e-p/A) - H1,ZEUS (HERA), EIC

Homework question:

At EIC, electrons with energy of 18 GeV will collide with protons with energy of 275 GeV . Calculate the center-of-mass energy of this accelerator.

Consider an experiment, where protons are at rest (fixed target). What electron energy would be needed to obtain the same center-of-mass energy as at EIC collider ?

Fixed target experiments

VS

Collider: Total acceptance detector

> In ideal case - we want to have 4π coverage for the detector.

But, beam elements limit a forward acceptance

Detection of forward going particles are particularly challenging

- ➤ not usual concern at colliders
- > Higher the Ion Beam energy, more difficult to achieve.
- => Integration with accelerator is very important
- > eP collider=> forward and backward directions have different functions.

Why endcaps and forward areas are important at EIC?

- asymmetric beam energiesProton/Ion Remnant
- Diffractive/exclusive physics in the Far-forward area

Why do we need a magnetic field?

Magnetic field to measure momentum and charge Solenoid:

In a homogeneous B-field the motion of a charged particle is a helix.

pT[GeV]= 0.3• B [T]• R [m]

- > Need high magnetic field to reconstruct bending radius: for high momentum particles, otherwise straight segment (no momentum measurements, no charge) - depends on resolution of tracker.
- > Also we need higher magnetic field for particles going at the shallow angle (along a beampipe)

20GeV

10GeV

~5 GeV

~ 1GeV

> BUT Too high magnetic field: low momentum particles could bend/fly inside a beampipe without detection **Yulia Furletova**

9

Total acceptance detector: Detector size

Detector needs a **Solenoid** to measure particle momenta =>

- We need it only for our detector system! The accelerator could function without it! => Solenoid field needs to be compensated by accelerator
- Optimize/change a magnetic field depending on the beam energy configuration we use ?
- Imitation in size: for the central detector (in R and Z) due to the radius/length of solenoid magnet =>
 - how it fits into the HALL?
 - how to do assembly, installation, maintenance ?

The BaBar solenoid

The BaBar superconducting solenoid will be repurposed for the EIC detector

The warm bore diameter of 2.84m and coil length of 3.512 \mbox{m}

Provides the 1.4 T field

Central Induction	1.5 T* (1.4 T in ECCE flux return)
Conductor Peak Field	2.3 T
Winding structure	Two layers, graded current density
Uniformity in tracking region	±3%
Winding Length	3512 mm at R.T.
Winding mean radius	1530 mm <i>at R.T.</i>
Operating Current	4596 A (4650 A*)
Inductance	2.57 H (2.56 H*)
Stored Energy	27 MJ
Total Turns	1067
Total Length of Conductor	10,300 m

* Design Value

 Table 2.3: Design parameters of the BaBar superconducting solenoid.

planing to reuse the surrounding combined hadronic calorimeter and flux containment system for this magnet Central detector layout (General purpose detector)

Particles

Today more then 200 particles listed in Particle Data Group (PDG)

But only 27 have ct > 1µm and only 13 have ct > 500µm

For all particles we want to measure:

- Particle momentum
- Origination (vertex)
- Energy
- Identification (Mass) : type of the particle

Why do we need precision measurements of particle momentum?

For example,
$$D^0 \rightarrow \pi^- K^+ (\pi^+ K^-)$$

For all particles we want to measure:

- Particle momentum
- Origination (vertex) •
- Energy •
- Identification (Mass) : type of the particle

Tracks

Tracks in particle physics

 \succ Particles have to interact with material of detector

Tracking detectors (position sensitive detectors)

> Particles have to interact with material of detector

- > Electronically recordable hits/tracks
- Provide precise space point coordinates/trajectory of charged particles
- Provide momentum measurements in magnetic (B) field
- > Provide angle measurements
- Provide measurements of primary and secondary vertices
- > Provide a multitrack separation
- > Provide a particle identification (if possible)
- Keep a minimum of material along the path of particles to minimize scattering and secondary interactions.

- Almost does NOT depend on material $(Z/A \sim \frac{1}{2})$
- Proportional to z²
- Depends on $\beta \gamma = p/E * E/m = p/m$
- The same curve for all z=1 particles when plotted as a function of $\beta\gamma$
- Have a minimum at $\beta\gamma$ = 3-4
- Plateau at high $\beta\gamma$

Momentum resolution

$$\frac{\sigma_{p_T}}{p_T} = \sqrt{\left(\frac{\sigma_{p_T}}{p_T}\right)^2_{\text{meas}} + \left(\frac{\sigma_{p_T}}{p_T}\right)^2_{\text{MS}}}$$

Position resolution (N>10):

 $= \frac{\sigma(x) \cdot p_T}{\sigma(x)}$ $\sigma(p_T)$ 720 p_T meas $0.3BL^2$ $\overline{N+4}$

Multiple scattering:

 p_{T} [GeV] = 0.3• B [T] • R [m]

from PDG plane *y*plane plane

At small momenta this limits resolution of momentum measurement ...

25 30 10 15 20pT (GeV/c) -Optimize material effects (multiple scattering) optimize amount of material along particle track (sensitive area (Si), support structure, cables..)

-Place first plane as near as possible to IP $-P_{T}$ is linearly better with B-field, but... -Increase N (but only as $1/\sqrt{N}$) -Improve hit point resolution (σ meas)

For example,

 $D^+ \rightarrow \pi^- K^+ \pi^+$

Tracking detectors/Vertex

Challenge: How to measure a displaced vertex ?!

-Secondary vertices: D-mesons (lifetime) ca 100-300 μm (our hair 50-150 μm)

=> Need to place high granularity and precision detector as close as possible to IP (to beam-pipe) BUT a beam pipe needs to be large enough to allow beam (with beam halo) to path through (depends on bunch sizes)

EIC central beam-pipe

Inner section: 1.5 m Beryllium to minimize multiple scattering
 2um Gold coating to absorb soft photons from synchrotron radiation

HADRON BEAM AXIS

HADRON FORWARD CHAMBER

Tracking at EIC

Hybrid tracking detector design: Monolithic Active Pixel Sensor (MAPS) based silicon vertex/tracking subsystem, the muRWELL tracking subsystem and the AC-LGAD outer tracker, which also serves as the ToF detector.

Magnetic field to measure momentum and charge (bended curves) Particles have to interact with material of detector:

- Charged particles: leave energy along the track (hits) (dE/dx)
- Photons/Gammas- depending on energy (*):
 no tracks (no hits or just a single hit)

Tracking detectors/Vertex

Plane 1 2 3 4 5

- ▶ Low material budget: 0.05% X/X0 per layer
- ▶ High spatial resolution: 10 µm pitch MAPS (Alice ITS3)
- TowerJazz 65nm technology (ongoing R&D Si Consortium)
- Configuration: Barrel + Disks for endcaps
- ▶ lηl<3.5 with full azimuth coverage</p>

ECCE tracker layout in ECCE simulation taking into account support structures

Plane 4

Tracking detectors/Vertex

For the larger/outer layers :

- muRWell technology is based on the outcome of the EIC generic R&D (eRD6)
- ▶ spatial resolution well below 100 um for curved geometry
- Large-area detectors possible cost efficient compared to silicon large surface detectors

Background/radiation

- The HERA and KEK experience show that having backgrounds under control is crucial for the EIC detector performance
- \succ There are main background/radiation sources :
 - primary collisions
 - beam-gas induced
 - synchrotron radiation
- The design of absorbers and masks must be modeled thoroughly

Primary collisions/ionizing radiation

Particle Identification

Limited number of "stable" final state particles: only 13 have ct > 500µm

- Electrons /positrons
- Gammas
- Jet/Jets
- Individual hadrons ($\pi\pm$, K \pm ,p)
- Muons (absorber and muon chamber)
- Neutrinos (missing PT in EM+HCAL)
- Neutral hadrons (n,K⁰_L) (HCAL)

- Electrons: EMCAL cluster + track pointing to cluster
- Gammas (γ): EMCAL cluster, no track pointing to cluster
- Neutrinos (v): missing P_T
- Muons: track, min. energy in EMCAL, min. energy in HCAL, track in muon det.
- Charged pions, kaons and protons from each other -> Cherenkov detectors

Short lived particles: hadron identification

е

A

x'

x, Q^2

G(x')

= c, b

Example: charm -> (fragmentation)-> D-mesons ->(decay) -> hadrons, leptons... Invariant mass reconstruction e'_{-} $D^{-*} \rightarrow \pi^{-s} D^{0}_{-s} \pi^{-K^{+}}$

• high combinatorial background without PID

Individual charged hadrons(π , K, p)

In order to select/identify specific reaction (for example, D0 production) one need to apply certain criteria/cuts to extract such events from the minbias events (DIS background).

Particle identification: charged hadrons(π , K, p)

Cherenkov detectors, complemented by other technologies at lower momenta (TOF) Need 4π coverage

Particle Identification detectors

PID technologies are based on the outcome of the EIC generic R&D (eRD14)

- Backward: Short, modular RICH (mRICH)
- Barrel: Radially compact with flexible design high-performance DIRC (hpDIRC)
- Forward: Double-radiator RICH (dRICH)
- TOF (*) AC-LGAD based time-offlight (TOF) system for hadronic PID in momentum range below the thresholds of the Cherenkov detectors

Particle Identification detectors

Backward PID

Compact version of a conventional aerogel-based proximity focusing RICH

 π/K up to 10 GeV

Barrel PID

- □ Radially compact (~5cm)
- hpDIRC with better optics and <100 ps timing (π/K up to ~6 GeV/c)

T. Horn (DPAP meeting)

Forward PID

Use a combination of aerogel and C_mF_n with indices of refraction matching EIC momentum range in the forward endcap. Similar to LHC-b, HERMES, JLAB/Hall-B, ...

 π/K up to 50 GeV

Readout: PMT vs SiPM

Compactness Single photon sensitive Huge dark noise rate (temperature dependent) > 100kHz/mm2 @ 25C

- For TOF or Far-Forward/Backward area
- Detectors can provide <20ps / layer</p>
- AC-coupled variety gives 100% fill factor and potentially a high spatial resolution (dozens of microns) with >1mm large pixels

Additional e- ID L GEM based TRD

- To improve e-identification for leptonic/semi-leptonic decays.
- In addition to Calorimeters and Cherenkov detectors in the hadronendcap considering TRD.
- GEM -TRD/Tracker :
 - e/π rejection factor ~10 for momenta between 2-100 GeV/c from a single ~15cm thick module.

- Very precise Tracking segment behind dRICH.
- Could be used as the EIC detector upgrade

Why do we need a calorimeter ?

- ✓ Use momentum measurements for charged particles: $E^2 = (p^2+m^2)$
 - > Need to identify a particle (or mass): not always possible.
 - > Need to measure momentum precise: not always possible.
 - * Momentum measurements are getting worse with

increase of particle momenta ($\frac{\Delta p}{\Delta}$ ~ p)

* BUT, Calorimeter measurements are getting better with increase of the energy $(\frac{\Delta E}{E} \sim \frac{1}{\sqrt{E}})$

 Need to measure neutral particles! Calorimeter is the ONLY detector for them.

Calorimetry

✓ In nuclear and particle physics calorimeter refers to energy measurements of particles.

We need 1kCal to change a temperature on 1 $^\circ\!C$ for 1 liter of water

1kCal ~ 1000•2.61•10¹⁹ eV ~ 2.61 • 10¹⁰ TeV

 In calorimeters the process of energy measurements is destructive: we must completely stop the particle in our detectors to measure its full energy :

Unlike, for example, tracking chambers (silicon, gaseous, etc), the particles are no longer available for detection once they path through a calorimeter.

With just few exceptions: muons and neutrinos penetrate through with a minimal interactions

 \Rightarrow Calorimeter is the **outermost** detector

Calorimeter measure charged + neutral particles

Calorimetry at EIC

Close to 4π coverage calorimeters need to perform ▶ Scattered electron kinematics measurement

Photon detection and energy measurement
 e/h separation (via E/p & cluster topology)
 π0/γ separation

EMCAL technologies are based on the outcome of the EIC generic R&D (eRD1)

Electromagnetic calorimeter Backward ECAL (EEMC) Barrel ECAL (BEMC)

Homogeneous calorimeter based on high-resolution PbWO₄ crystals

Figure from the EIC EEEMCAL Consortium <u>design report</u>

*Based on prototype beam tests and earlier experiments Homogeneous, projective calorimeter based on SciGlass, cost-effective alternative to crystals

T. Horn (DPAP meeting)

Forward ECAL CCC

Highly-granular shashlik sampling calorimeter based on Pb/SC

*Based on prototype beam tests and earlier experiments

ECCE EM calorimeters provide the required coverage, meet the physics energy resolution, and pion suppression in all three regions (endcaps, barrel)

Crystals/Glass

Example: SC1 glass

2018: 1cm x 1cm x 1cm

- ▶ High-resolution PbWO4 (PWO) crystals are available from two vendors
- SciGlass 20cm has been produced reliably; We tested a 3x3 20 cm SciGlass prototype detector in beam and measured its performance as per simulation (ongoing R&D EEEMCAL consortium, eRD105)
- Received the first polished 40 cm SciGlass with more on the way

2019: 2cm x 2cm x 4cm

▶ We have an SBIR phase-II to start large-scale production (40+ cm, rectangular and projective shapes)

3000

5050

5100

36

5300

5250

Crystal ID

5200

5150

Sampling calorimeter: EMCAL

- Well established technology
 - HERA-B, ALICE, PHENIX, PANDA, ...
- Medium energy resolution \sim 7..13%/ \sqrt{E}
- Compact ($X_0 \sim 7$ mm or less), cost efficient
- Pb/Sc shashlyk

Sampling calorimeter: HCAL

Forward HCAL (LFHCAL)

Integrated ECAL+HCAL longitudinally segmented sampling calorimeter based on Fe/SC, W/Sc and last segment W (tailcatcher)

*Based on prototype beam tests and earlier experiments

Barrel HCAL (OHCAL+IHCAL)

38

Calorimeter for particle identification

Electrons: track pointing to cluster in EMCAL Gammas: no track but cluster in EMCAL Neutral hadrons: no tracks, energy in HCAL Neutrino: missing energy (E_T, p_T) Muon: track, minimum energy in CAL Charged hadrons: track+ energy in HCAL (ratio EMCAL/HCAL)

Problems (misidentification):

e/hadron separation: hadrons could develop shower in EMCAL $\pi 0 \rightarrow \gamma \gamma$: cluster in EMCAL Not possible to separate charged hadrons (π ,K,p)

Material budget

- □ Low material budget
 - Minimize bremsstrahlung and conversions for primary particles
 - **Improve tracking performance at large** $|\eta|$ by minimizing multiple Coulomb scattering
 - □ Minimize the dead material in front of the high-resolution EM calorimeters

EIC interaction region layout (IP6)

- □ ~9.5 m around the IP is reserved for the *central* detector
- Crossing angle provides beam separation and space for detector placements
- Apertures of FFQs and dipoles are designed to allow forward going particles to go through

Far forward and far backward detector components are distributed along the beam line within ±40 m
 Design should be able to operate with different beam energy and high luminosity
 We are keeping a full detector integration in sync with the accelerator design from the early stages on

Far-forward detectors (hadron-going)

B0 -dipole

BO-detectors

- ➡Dipole field 1.3T: for momentum reconstruction. Design still ongoing (most likely B0 will be shorter 1.8m -> ~1.5m)
- B0 placement after HCAL
 - ✦ Limited space
 - Access to B0-detectors only from one side (after opening HCAL)
 - ✦ Vacuum pumps
 - ✦ Beam-pipes: crossing angle
- B0 placement: high background area => high granularity detectors needed in this area

BO-detectors

$(5.5 < \theta < 20.0 \text{ mrad}) (4.6 < \eta < 5.9) - \text{large |t| value}$

- Create zero field line at electron beam axis.
- Warm space for detector package insert located inside a vacuum vessel to isolate from insulating vacuum.

B0 -dipole

- ➤ Beampipe:
 - Near IP common beam pipe
 - Beams are separation into two independent beam-pipes in front of B0
 - Low-mass exit window for far-forward particles
- => B0 detector mechanical integration

BO-detectors

 $(5.5 < \theta < 20.0 \text{ mrad})$

∆p_

Fransverse Momentum Resolution,

- ✓ Tracker for charged particles: High granularity detectors needed in this area with layers of fast-timing detectors due required *p_T*, beam effects, high background.
- ✓ B0-dipole length is ca 1.5m
- ✓ Combination of MAPS for spatial resolution and AC-LGADs for timing spaced evenly by 30cm inside (~20 cm in diameter)

For photon detection: A simple photon tagger or EMCAL (for energy measurements) will be needed. As an example: for $\gamma + \gamma$ from π^0 separation to clearly isolate u-channel DVCS

- → $PbWO_4$ (11.2 r.l.) behind the tracking layers: each 10 cm long with a surface area of 2x2 cm² (ECCE)
- ➡ or 2 radiations lengths of Pb converter, followed by a layer of AC-LGADs (ATHENA)
- => Work in progress

Roman-Pots

0.0* (10 σ cut) < θ < 5.0 mrad $\sigma(z) = \sqrt{\varepsilon \cdot \beta(z)}$

- \checkmark Movable (as close as 10σ away from the beam (depends) on beam energy and beam configuration: high divergence or high acceptance).
- \checkmark Move out during an injection.
- ✓ RPs needs to be **integrated into the vacuum system**
- ✓ Insertion from top and bottom need to minimize space in front of ZDC.
- \checkmark Preliminary concept of a mechanical setup.
- ✓ Very close contact with accelerator to avoid negative impacts on the machine operation

Roman-pots resolution

Alex Jentsch

Angular divergence

 The various contributions add in quadrature (this was checked empirically, measuring each effect independently).

$\Delta p_{t,t}$	$\Delta p_{tal} = \sqrt{(\Delta p_t)^2}$	$(\Delta p_{t,aD})^2 + (\Delta p_{t,aD})^2$	$(\Delta p_t)^2 + (\Delta p_t)^2$ ex smearing vity rotation.	$(pxl)^2$ Smearing from finite pixel size.	These studies based on the "ultimate" machine performance with strong hadron cooling.	
	Ang Div. (HD)	Ang Div. (HA)	Vtx Smear	250um pxl	500um pxl	1.3mm pxl
$\Delta p_{t,total}$ [MeV/c] - 275 GeV	40	28*	20	6	11	26

Primary vertex smearing from crab cavity rotation

16

12

Beam angular divergence

 $\Delta p_{t,total}$ [MeV/c] - 100 GeV

 $\Delta p_{t.total}$ [MeV/c] - 41 GeV

- Beam property, can't correct for it sets the lower bound of smearing.
- Subject to change (i.e. get better) beam parameters not yet set in stone

11

- *using symmetric divergence parameters in x and y at 100urad.
- Vertex smearing from crab rotation
 - Correctable with good timing (~35ps).

22

14

With timing of ~70ps, effective bunch length is 2cm ->.25mm vertex smearing (~7 MeV/c)

9

10

9

9

11

10

- Finite pixel size on sensor
 - 500um seems like the best compromise between potential cost and smearing

Off-momentum detectors

- Protons that come from nuclear breakup have a different magnetic rigidity than their respective nuclear beam (x_L<1)</p>
- This means the protons experience more bending in the dipoles.
- ➤ As a result, small angle (*θ* < 5mrad) protons from these events will not make it to the Roman Pots, and will instead exit the beam pipe after the last dipole.
- Detecting these requires "off-momentum detectors".
- ➤ Movable, beam pipe integration.

Off-momentum detectors

- Detecting Lambda's decays in the target fragmentation area is very hard, due to a very large decay length (meters).
- Would require in addition detection of negative charged particles (pi-) at the OFF-momentum detector location

*note: space for readout may extend the longitudinal length.

51

Zero Degree Calorimeter (ZDC)

For detection of neutrons and photons

Acceptance:

0<θ<5.5 mrad

(Limited by bore of magnet where the neutron cone has to exit)

High resolution ZDC, based on ALICE FoCAL

Far-backward (electron-going) region

- > This area is designed to provide coverage for the low-Q² events (photoproduction, $Q^2 < \sim 1 GeV^2$). Need to measure the scattered electron position/angle and energy.
- > And luminosity detector (ep -> e'p γ bremsstrahlung photons)
- > Beam-pipe design ongoing

Luminosity monitor

Goals for Luminosity Measurement:

Integrated luminosity with precision $\delta L/L < 1\%$

- Luminosity measurements via Bethe-Heitler process
- ➤ Photons from IP collinear to e-beam
- > First dipole bends electrons
- Photon conversion to e-/e+ pair
- > Pair-spectrometer
- Synchrotron photons collimation scheme needs to be further refined

LUMINOSITY MEASUREMENT VIA BETHE-HEITLER PROCESS:

Electron polarization measurements

Compton polarimeter:

- Used to determine a polarization of electron beam
- Incoming photons scatters off electron

 p_{1}, s_{1} p_{2}, s_{2} p_{4}, s_{4} p_{2}, s_{2}

Compton Scattering

~1% electron beam polarization measurements Simulation for EIC is ongoing

Photon detector (calorimeter) a matrix of four crystals of Le ad Tungstate (P bW O_4) scintillating crystals with dimensions of $3 \times 3 \times 20$ cm to detect the backscattered photons.

Electron detector (Diamond micro-strip detector)

The detectors are made from 21 mm× 21 mm × 0.5 mm plates of Chemical Vapor Deposition (CVD) diamond . Each diamond plate has 96 horizontal metallized electrode strips with a pitch of 200 μ m

Hadron Polarization (RHIC, EIC)

Elke Aschenauer Vadim Ptitsyn

Existing p Polarization in RHIC achieved with "Siberian snakes"
Near term improvements will increase proton polarization in RHIC from 60% to 80%

Polarimetry exploits left-right asymmetry in elastic scattering due to spin orbit interaction

• Proton-Carbon Polarimeter (pC): very fast and high precision, but needs to be normalized

 N_R^{\uparrow} or N_R^{\downarrow}

Hadron Polarization (RHIC, EIC)

K. Oleg Eyser

• Polarized hydrogen Jet Polarimeter (HJet): absolute polarization, but slow.

Hadron Polarization

Hadron polarimetry at EIC

At RHIC:

- Polarized hydrogen Jet Polarimeter (HJet): absolute polarization, but slow.
- Proton-Carbon Polarimeter (pC): very fast and high precision, but needs to be normalized

Elke Aschenauer

BUT EIC is not RHIC!

- Higher bunch frequency and current.
- Background?

New detector technology (fast ~ 10ps Si?) Reduce TOF ? Polarized D and He-3

DAQ: Streaming Readout Architecture

Summary

- The EIC detector had a physics-driven design
- ▶ It is a general purpose detector.
- It is also a balance between the reuse of equipment, the mature state of art technology and detector technologies that are at the near-end of an extensive R&D effort
- ▶ AI was used to optimize detector choices, locations, and materials.
- ▶ We are continue to improve the design on the way to CD2

Following movies are made by Miguel Arratia and Sean Preins

Backup

 \sim

Why do we need a magnetic field?

-bending radius depends on a particle momentum -charge (right, left)

p[GeV]= 0.3• B [T]• R [m]

Electron in a magnetic field at the Bevatron, 1940

Energy loss

Most tracking detectors are ionization detectors

same curve plotted vs. momentum for different particles => could be used for PID

$$-\left\langle \frac{dE}{dx}\right\rangle = K \frac{Z}{A} \rho \frac{z^2}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{max}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2} - \frac{C(\beta\gamma, I)}{Z} \right]$$

- Examples of typical energy loss at minimum ionizing:
 - ✓ 1 meter air: 0.22 MeV
 - ✓ $300\mu m$ Si: 0.12 MeV
 - ✓ 1mm iron: 1.1 MeV
- Energy loss is a stochastic process (app described by Landay distribution) with infinitely" long tail.

Why endcaps and forward areas are important at EIC?

 η = - ln(tan(θ /2))

Transition area from DIS to Photoproduction (Q2<5GeV)

66

Why endcaps and forward areas are important at EIC?

η~-1.2

Diffractive/exclusive physics in the Far-forward area

Readout: SiPM

