
CHAPTER 1

HUGS 2022 Lecture 1:
Construction of QCD (Part 1)

1.1 Overview: The Theoretical Framework

Figure 1.1: Illustration of QCD’s place in the landscape of relativistic quantum
field theories.

Quantum Field Theory

By way of introduction, let us begin by orienting ourselves with respect to the
theoretical language and calculculational approach we will employ to describe
QCD, as visualized in Fig. 1.1. The language of relativistic quantum mechanics
is quantum field theory (QFT). QFT expresses the physics of multiparticle
creation and annihilation in a manifestly Lorentz-covariant formalism, which
elegantly solves the problem of causality for a relativistic quantum theory.

The simplest quantum theories are “free” theories – Lagrangians whose
equations of motion are linear, such that the solutions obey a noninteracting
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1. HUGS 2022 Lecture 1: Construction of QCD (Part 1)

superposition principle. These free theories define the “particles,” with one
Lorentz-invariant Lagrangian that can be enumerated for each representation
of the Lorentz group SO+(3, 1). More complex Lagrangians with nonlinear
equations of motion are interpreted as interactions among the particles. The
“traditional” approach to solving interacting theories is perturbation theory: a
Taylor series expansion of physical observables in terms of a small coupling
constant, such as the fine structure constant αEM ≈ 1/137 in quantum
electrodynamics (QED). This allows for a systematic order-by-order computation
of observables with controllable error in QFT.

Perturbative and Nonperturbative Effects

Figure 1.2: Behavior of the essential singularity exp[−1/V0] in the complex
plane.

Perturbation theory is a powerful, systematic approach to studying
interacting theories, but it is not complete. The fundamental philosophy
is an expansion of observables in a smooth Taylor series at small values of the
coupling constant. The assumed smoothness of this expansion can fail in a
number of important ways. First, there can be fundamental physics effects
which are essentially nonperturbative in nature. Nonperturbative effects are
often associated with a radical realignment of the degrees of freedom in a
system which causes perturbation theory to break down. One famous example
is nonperturbative transition from degrees of freedom resembling electrons and
holes in a normal metal to Cooper pairs in a superconductor. As computed in
the BCS theory of superconductivity, the binding energy Eb of a Cooper pair is

Eb = 2ωD e−2/V0ρ(εF ) , (1.1)

where V0 is the strength of the effective potential between two electrons, ωD is the
Debye frequency and ρ(εF ) is the density of states at the Fermi energy1. Rather

1For more information, see these nice lecture notes.
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1.1. Overview: The Theoretical Framework

than having a well-behaved Taylor series at weak coupling V0 → 0, the binding
energy (1.1) instead has an essential singularity of the form f(V0) = e−1/V0

shown in Fig. 1.2. This form, which often occurs in nonperturbative mechanisms,
has no Taylor series:

f(V0) ?= f(V0 = 0) + V0
df

dV0

∣∣∣∣
V0=0

+ 1
2V

2
0
d2f

dV 2
0

∣∣∣∣
V0=0

+ · · ·

!= 0 + 0 + 0 + · · · . (1.2)

A perturbative calculation of the binding energy (1.1) would yield zero, to all
orders in perturbation theory and could never discover the superconducting
phase transition. Likewise, one can construct a “proof” that Eb = 0 to all orders
in perturbation theory, but this still misses the possibility of nonperturbative
contributions.

This example illustrates that while perturbation theory can capture the
smooth evolution of the degrees of freedom in a quantum field theory, by
construction it cannot capture a severe rupture in those degrees of freedom such
as during a phase transition. Exactly the same kind of mechanism (1.1) which
leads to the formation of a Cooper-pair condensate and the superconducting
phase transition in BCS theory is also responsible for the spontaneous breaking
of chiral symmetry in QCD, which is associated with quark confinement and
the emergence of the proton mass.

Asymptotic Series in Perturbation Theory

F(λ)= 1
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Figure 1.3: One example of the breakdown of convergence in an asymptotic
series.

Another important caveat to the applicability of perturbation theory is the
fact that the perturbation series does not converge in general. Rather than
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1. HUGS 2022 Lecture 1: Construction of QCD (Part 1)

producing an absolutely-convergent series, the perturbation expansion is an
asymptotic series. This means that, while a fixed-order calculation may provide
a good estimate of the true solution, the accuracy of that estimate does not
necessarily increase as one goes to higher orders. An example of an asymptotic
series is shown in Fig. 1.3. Note that the fixed-order approximation gets better
as one increases the accuracy from LO, to NLO (n = 2), to NNLO (n = 3).
But as one pushes the perturbative expansion to higher and higher orders, the
error starts to increase rather than decrease. The n = 5 curve is clearly worse
than the n = 3 curve, and the n = 10 curve is a terrible approximation to the
exact solution. This illustrates that, sometimes, “working harder” (computing
to higher accuracy in the perturbation series) doesn’t always pay off.

Resummation in Perturbation Theory

Finally, there can be a more gradual evolution of the degrees of freedom in
a quantum system which is capturable in perturbation theory. This often
occurs when there is a systematic enhancement of certain amplitudes due to a
logarithmically large phase space, for instance in integrals of the form

α

E2∫
Λ2

dk2
⊥

k2
⊥

= α ln E
2

Λ2 , or (1.3a)

α

1∫
Λ/E

dz

z
= α ln EΛ . (1.3b)

This creates an interesting tension where the weak-coupling approximation
α ≪ 1 may still be valid, but certain amplitudes are systematically enhanced
by a large logarithm lnE/Λ coming from the limits of the phase space. If that
logarithm becomes large enough, it can begin to compete with the smallness of
the coupling α. In the limit

α ≪ 1 , ln EΛ ≫ 1 , α ln EΛ ∼ O (1) , (1.4)

these systematically enhanced diagrams are not “small” at all, and we must
re-sum them all, since

1 ∼ α ln E
λ

∼
(
α ln E

λ

)2
∼
(
α ln E

λ

)3
∼ · · · ∼

(
α ln E

λ

)n

. (1.5)

Resumming these large logarithmic corrections can be accomplished by
expressing them as a differential equation; if that equation can be solved,
then its solution encodes the iteration of these enhanced corrections to all
orders in perturbation theory. This procedure re-orders the perturbation series,
giving the leading-logarithmic approximation (LLA) to the resummation. This
description of a gradual transformation of degrees of freedom in QFT is often
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1.2. Gauge Theory of U(1): Quantum Electrodynamics

referred to as quantum evolution. It occurs prominently in QCD in several
forms, including the DGLAP evolution with Q2 and BFKL evolution with xB

of parton distribution functions.

1.2 Gauge Theory of U(1): Quantum Electrodynamics

The Golden Archetype of Gauge Symmetry

Quantum Electrodynamics (QED) is defined by the Lagrangian

LQED = ψ̄(i/∂ −m)ψ − 1
4FµνF

µν − eψ̄γµψA
µ , (1.6)

which describes the interactions of charged fermions (“electrons”) with vector
bosons (“photons”). QED is a gauge theory, meaning that the particular form
of the photon/electron interaction vertex is uniquely dictated by a symmetry
transformation (called a “gauge symmetry”) of the Lagrangian (1.6). The gauge
symmetry is not a quirk of QED; it is an essential feature necessary to even
define an interacting vector boson.

Global Symmetry and Conserved Current

The QED Lagrangian (1.6) is uniquely obtained from the free Dirac Lagrangian

LDirac = ψ̄(i/∂ −m)ψ (1.7)

through the process of minimal coupling. The free Dirac Lagrangian (1.7) is
invariant under the global symmetry transformation

ψ′(x) = eiϕψ(x) or
[
Reψ′(x)
Imψ′(x)

]
=
[
cosϕ − sinϕ
sinϕ cosϕ

] [
Reψ(x)
Imψ(x)

]
, (1.8)

where ϕ is an arbitrary constant. This symmetry transformation is just a
complex phase rotation, which may be regarded as a “1 × 1 unitary matrix”.
This describes the Lie group U(1), which is a global symmetry of the free
Dirac Lagrangian (1.7). Since charge conjugation ψ ↔ ψ̄ changes particles into
antiparticles, this U(1) rotation may be regarded as a continuous rotation which
redefines the particles and antiparticles.

By Noether’s theorem, the invariance of the Lagrangian (1.7) under the
continuous symmetry transformation (1.8) implies the existence of a conserved
current:

δL = 0 = δL
δψ
δψ + δψ̄

δL
δψ̄

+ δL
δ(∂µψ)δ(∂µψ)

=
(
∂µ

δL
δ(∂µψ)

)
δψ + δL

δ(∂µψ)∂µ(δψ)

= ∂µ

(
δL

δ(∂µψ)δψ
)

0 = ∂µ

(
ψ̄γµψ

)
(1.9)
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1. HUGS 2022 Lecture 1: Construction of QCD (Part 1)

where we have used the equations of motion. The net particle number current
is conserved:

jµ = ψ̄γµψ , ∂µj
µ = 0 , (1.10)

reflecting the conservation of electric charge. The electromagnetic current
Jµ

EM = eψ̄γµψ is just the particle number current, weighted by the charge.

The Problem with Vector Bosons: Scalar Polarization Mode

The form of the QED interaction vertex (1.6) is of the form

LI = −Jµ
EMAµ = −eψ̄γµψ Aµ, (1.11)

which introduces the photon field Aµ as being created by the conserved current
jµ. This choice of vertex directly links the properties of the conserved current
jµ produced by the U(1) global symmetry and the structure of the vector field
Aµ. This is not just a curiosity; it is an essential feature necessary for the
photon field Aµ to be well-defined at all. The reason is that, in 4-dimensional
spacetime, there are potentially four independent polarization modes of Aµ,
including the “timelike” or “scalar polarization” mode, which can be written as
the gradient of a scalar field:

Aµ
(scalar)(x) = ∂µϕ(x) . (1.12)

The timelike polarization is “unphysical” – if quantized, it would lead to states
of negative norm, which are incompatible with a Hilbert space of quantum states.
Getting rid of the sick scalar polarization is essential for any self-consistent
quantum theory of vector bosons.

An interaction vertex of the form (1.11) which couples the vector boson to a
conserved current arising from a global symmetry eliminates the scalar-polarized
modes (1.12) in an elegant way: by reducing them to a symmetry transformation
on the Lagrangian. If we shift Aµ by the addition of a scalar-polarized mode,

A′ µ(x) = Aµ(x) + ∂µϕ(x) (1.13a)
L′

I = LI − ejµ∂µϕ = LI − ∂µ(ejµϕ) (1.13b)

the interaction term is invariant (up to an irrelevant total derivative). Thus,
with a special interaction vertex of the form (1.11), the scalar modes are removed
as “redundant, unphysical degrees of freedom” which have no consequence on
observables.
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CHAPTER 2

HUGS 2022 Lecture 2:
Construction of QCD (Part 2)

2.1 Previously

• Taxonomy of quantum field theories: free theories, interacting theories,
gauge theories

• Perturbation theory and its limitations

• Global symmetry and current conservation

• Problematic scalar-polarized mode of the vector field Aµ

Minimal Coupling: Gauging the QED Lagrangian

The extension of the free Dirac Lagrangian (1.7) to include the minimal coupling
to the vector field Aµ through a term of the form −jµA

µ can be compactly
expressed using the gauge-covariant derivative:

Lgauged = ψ̄(iγµ∂
µ −m)ψ − e ψ̄γµψA

µ

= ψ̄[iγµ(∂µ + ieAµ) −m]ψ
≡ ψ̄(i /D −m)ψ . (2.1)

The remarkable physics of extending the local U(1) symmetry to form the basis
of a local U(1) gauge theory is encoded in the simple replacement of the partial
derivative with the covariant derivative:

∂µ → Dµ ≡ ∂µ + ieAµ . (2.2)

The covariant derivative expresses the fact that the shift (1.13) of Aµ by the
addition of a scalar mode is now interconnected with the U(1) symmetry of the
Dirac Lagrangian (1.7). Under the more general version of the transformation
(1.8) in which the rotation phase ϕ(x) can vary as a function of spacetime,

ψ′(x) = eiϕ(x)ψ(x) , (2.3)
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2. HUGS 2022 Lecture 2: Construction of QCD (Part 2)

the Lagrangian (2.1) transforms as

L′(x) = ψ̄′(x)(iγµ∂
µ −m)ψ′(x) − e ψ̄′(x)γµψ

′(x)Aµ ′(x)
= ψ̄(x) e−iϕ(x)(iγµ∂

µ −m)eiϕ(x) ψ(x) − e ψ̄(x) e−iϕ(x)γµe
iϕ(x) ψ(x)Aµ ′(x)

= ψ̄(x)(iγµ∂
µ −m)ψ(x) − ψ̄(x)γµψ(x) ∂µϕ(x) − e ψ̄(x)γµψ(x)Aµ ′(x)

= ψ̄(x)(iγµ∂
µ −m)ψ(x) − e ψ̄(x)γµψ(x)

[
Aµ ′(x) + 1

e
∂µϕ(x)

]
. (2.4)

The effect of the local transformation (2.3) can be interpreted as shifting Aµ

by a scalar-polarized mode, exactly as we did in Eq. (1.13). Since the minimal
coupling of Aµ to the conserved current jmu guarantees that a shift by a scalar
mode is an unphysical symmetry transformation, the two pieces (global U(1)
symmetry and scalar polarizations of Amu) work in tandem as part of a single
composite symmetry operation known as gauge symmetry.

Choosing a special interaction vertex of the form (1.11) has united the
elimination of the scalar-polarized mode with the global U(1) symmetry
responsible for the conserved current jµ. This choice effectively enlarges the
U(1) symmetry group from a global symmetry to a local symmetry and uses
it to define the photon field Aµ. Without a gauge-invariant coupling of this
form, the photon field could not exist at all, since it would be polluted with
unworkable scalar-polarized modes.

Geometric Interpretation

Figure 2.1: Sketch of the combined spacetime + gauge manifold.

From the point of view of the local gauge transformation (2.3), the covariant
derivative (2.2) has a natural geometric interpretation. The ordinary partial
derivative ∂µ is not invariant under the local U(1) transformation (2.3), because
different points xµ of spacetime transform differently, so the partial derivative

8



2.1. Previously

makes an unequal comparison between two adjacent points. The covariant
derivative (2.2) compensates for the different transformations of ψ(x) at different
points, permitting a simple meaningful (gauge-invariant) comparison between
two points.

Under the combined transformation

ψ′(x) = eiϕ(x)ψ(x) , (2.5a)

Aµ ′(x) = Aµ(x) − 1
e
∂µϕ(x) , (2.5b)

the covariant derivative transforms as(
Dµψ(x)

)′ ≡ (∂µ + ieA′
µ)ψ′(x)

= (∂µ + ieAµ − i∂µϕ) eiϕ(x)ψ(x)
= eiϕ(x)(∂µ + ieAµ)ψ(x)
= eiϕ(x) Dµψ(x) . (2.6)

That is: the covariant derivative of a field has the same gauge transformation
as the field itself. This is the precise mathematical statement that the covariant
derivative cancels the nonlocal differences in the gauge transformation, providing
a meaningful way to compare two different points in spacetime in a gauge-
invariant way. For instance, it is clear that ψ̄Dµψ is gauge invariant.

We have found that, by minimally coupling the photon field to the conserved
electric current, we have constructed a Lagrangian (2.1) which is invariant under
a mix of Lorentz transformations and shifting Aµ by scalar modes. Even though
spacetime itself is “flat” (in this discussion), the different transformations of
neighboring points under a local U(1) transformation act as if the combined
spacetime + gauge manifold is curved. From this point of view, the problem of
how to compute meaningful derivatives on a curved manifold is a standard one
in differential geometry. The covariant derivative (2.2) precisely introduces the
photon field Aµ as a metric connection which compensates for the curvature of
the gauge dimensions along the physical spacetime dimensions.

Field-Strength Tensor as a Generalized Curl

The last piece of the QED Lagrangian (1.6) is the kinetic term associated with
the free photon field. The free-field Lagrangian for Aµ must be quadratic in
A, coupled to derivatives to contain momenta, and a Lorentz scalar. It must
be massless, as an essential requirement of gauge symmetry1. From these
considerations, the kinetic term can be deduced to be

Lkinetic = −1
4FµνF

µν , (2.7)

1Massive vector bosons have a different relation with their scalar-polarized modes, whose
removal is generally enforced by constraint.
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2. HUGS 2022 Lecture 2: Construction of QCD (Part 2)

where the antisymmetric field-strength tensor Fµν = ∂µAν − ∂νAµ is a four-
dimensional generalization of the curl, transforming as an antisymmetric rank-2
tensor under Lorentz tranformations.

Based on the geometric interpretation of gauge transformations discussed
previously, we expect that this generalized curl should also have a sensible
interpretation under gauge transformations. Indeed, the field-strength tensor
Fµν has a particularly simple expression in terms of the covariant derivative
(2.2): [

Dµ , Dν

]
= ie(∂µAν − ∂νAµ) = ie Fµν

∴ Fµν = −i
e

[
Dµ , Dν

]
. (2.8)

This expression, as a commutator of covariant derivatives, describes the
generalized curl including the curvature along the gauge direction. Since
Dµ is itself a gauge-covariant quantity (transforming locally under gauge
transformations), so is Fµν . In the case of QED, Fµν is simply gauge-invariant,
but in the more general case, Fµν may transform under gauge transformations,
and its transformation properties are dictated by those of the covariant derivative
Dµ.

Next Steps

Taken together, the QED Lagrangian

LQED = ψ̄(i/∂ −m)ψ − 1
4FµνF

µν − eψ̄γµψA
µ , (2.9)

and all the physics of electrodynamics are consequences of a single unifying
principle: U(1) gauge symmetry. Physically, this gauge group encodes the
statement that electric charge is a scalar quantity. Electric charge may be
positive or negative (electrons and positrons), but it has no “direction” associated
with it. This is reflected in the fact that U(1) corresponds to rotation by a
complex phase, without any matrix dimension to it. In a different gauge group,
such as SU(2) (the Pauli matrices), the gauge transformation could employ
a nontrivial matrix structure. This single difference is responsible for the
enormous complexity of QCD.
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CHAPTER 3

HUGS 2022 Lecture 3:
Construction of QCD (Part 3)

3.1 Previously

• Minimal coupling and the covariant derivative

• Enlarged local gauge symmetry on a combined gauge + spacetime manifold

• Gauge symmetry is mandatory for a massless vector boson like the
photon to exist at all

• Gauge symmetry dictates the structure and physics of the Lagrangian at
a very deep level.

3.2 Quantum Chromodynamics: Gauge Theory of SU(3)

Given the context developed thus far for what a gauge theory looks like in
the case of the Abelian (commutative) gauge group U(1), we can now state
concisely what the governing principle of Quantum Chromodynamics (QCD)
is. QCD is the SU(3) gauge theory describing interactions of fermions called
“quarks” with vector gauge bosons called “gluons.”

Physically, the statement that the gauge group is SU(3) implies that the
quarks possess a new kind of charge quantum number, termed “color charge,”
which come in three different varieties, referred to as “red, blue, and green.”
The fact that the color quantum number comes in multiple independent types,
or means that unlike electric charge, color charge carries a particular “direction”
to it. Color charge is a vector1. This structural change in the gauge theory
leads to profound differences between QED and QCD, as illustrated in Fig. ??.

As with QED, we construct the QCD Lagrangian by starting with the free
Dirac Lagrangian. Now we posit that there are three independent varieties of

1under SU(3) transformations
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Figure 3.1: Comparison of the role of “charge” in QED versus QCD.

noninteracting fermions (quarks), corresponding to the three color states:

Lfree = ψ̄i(i/∂ −m)ψi , i = 1, 2, 3 . (3.1)

Here we use indices like i, j, k to denote quark colors, referred to as the
“fundamental representation” of SU(3). The multicomponent Lagrangian (3.1)
contains a much larger global symmetry than just the U(1) symmetry of QED.
It possesses a symmetry of rotations among the 3 color states. Just as the
unitary rotation operator is given by eiϕ⃗·J⃗ , with ϕ⃗ the angle and axis of rotation
and J⃗ the generators of rotations (angular momenta), the SU(3) color rotations
take a similar form:

ψ′
i(x) = exp [iϕata]ij ψj(x) , a = 1, 2, · · · , 8 . (3.2)

As with the rotation matrix, there are various rotation angles ϕa and SU(3)
rotation generators ta, for each of the possible “axes of rotation” which can mix
between the various color states. There are many such “axes” – in fact, there
are more axes than the number of quark colors themselves. To go from any of
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3.2. Quantum Chromodynamics: Gauge Theory of SU(3)

3 colors initially to any of 3 final colors, there are in principle 32 = 9 possible
axes of rotation. The group SU(3) excludes the contribution proportional to
the identity matrix2, reducing the number to 32 − 1 = 8 types of SU(3) color
rotations.

Group Structure of SU(3)
The nomenclature SU(3) for the QCD gauge group refers to the group of special,
unitary, 3 × 3 matrices which perform the color rotations among the quark
colors. The term “special” indicates that the matrices have unit determinant,
which is the condition that excludes the unit matrix (“QCD photon”).

The 8 generators of SU(3) in QCD are written

ta = 1
2λ

a (3.3)

where λa are the Gell-Mann matrices

λ1 =

 1
1

 λ2 =

 −i
i

 λ3 =

1
−1


λ4 =

 1

1

 λ5 =

 −i

i

 λ6 =

 1
1


λ7 =

 −i
i

 λ8 = 1√
3

1
1

−2

 . (3.4)

In this fundamental representation of SU(3), the Gell-Mann matrices are these
explicit 3 × 3 matrices, with the particular components t3, t8 being diagonal.
The essential property of SU(3) is the Lie algebra of its generators, which can
be expressed through the commutator relation

[ta , tb] = ifabc tc , (3.5)

where fabc are the totally antisymmetric structure constants

fabc 1 1
2 − 1

2
1
2

1
2

1
2 − 1

2

√
3

2

√
3

2
a 1 1 1 2 2 3 3 4 6
b 2 4 5 4 5 4 6 5 7
c 3 7 6 6 7 5 7 8 8

(3.6)

with fabc = −f bac = −facb and all other components of fabc equal to zero.
The structure constants fabc themselves provide the 8-dimensional “adjoint

representation” of SU(3) (which we denote here in capital letters),

(T a)bc ≡ −i fabc , (3.7)
2This would resemble the interaction of the photon, since it would again be a U(1) gauge

subgroup.
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which satisfies the Lie (commutator) algebra (3.5)

[T a , T b] = ifabc T c (3.8)

through the use of the Jacobi identity[
T a , [T b, T c]

]
+
[
T b , [T c, T a]

]
+
[
T c , [T a, T b]

]
= 0 . (3.9)

Just as the 3 × 3 fundamental representation of SU(3) describes the color states
of the quarks and how they transform, the 8×8 adjoint representation describes
the color states and interactions of the gluons.

Comparison to SU(2)
The Gell-Mann matrices (3.4) bear a clear resemblance to the Pauli matrices –
for good reason. The Pauli matrices

σ1 =
[

1
1

]
σ2 =

[
−i

i

]
σ3 =

[
1

−1

]
(3.10)

define the generators ta = 1
2σ

a (with a = 1, 2, 3) for the sister group SU(2).
The Lie algebra of SU(2) is

[ta , tb] = iϵabc tc , (3.11)

where the structure constants for SU(2) are just the elements of the
antisymmetric Levi-Civita symbol.

In QCD, the quantum number for quark colors comes in 3 distinct states,
giving the 3 × 3 Gell-Mann matrices (3.4). For the sister group SU(2), the
quantum number comes in 2 distinct states (usually in the context of “spin-up”
and “spin-down”), giving the 2 × 2 Pauli matrices (3.10). For SU(2), there
are 22 − 1 = 3 Pauli matrices, which correspond to the 3 independent axes of
rotation σx, σy, σz. In the same way, the 32 −1 = 8 Gell-Mann matrices describe
the axes of (color) rotation in QCD. With this analogy, we may speak of a
rotation of a quark from fundamental color state (say) “red” (i = 1) to “blue”
(j = 2) by the emission/absorption of a gluon in the adjoint color state a = 1.
This rotation would be described by the element (λ1)21 = 1 of the corresponding
Gell-Mann matrix. This is what is meant by the statement “charge is a vector”
in QCD.

The t’Hooft Large-Nc Limit

While for true QCD the number of quark colors is 3, the general gauge structure
of QCD is only minimally modified for the case of arbitrary number of quark
colors Nc. We have already benefited from the comparison of QCD (Nc = 3)
with the Pauli matrices of Nc = 2. In fact, the algebra of the general gauge
group SU(Nc) becomes significantly simpler with clever usage of the number
of colors Nc. One particularly powerful usage is the t’Hooft large-Nc limit

αs → 0 , (3.12a)

14

https://en.wikipedia.org/wiki/Levi-Civita_symbol
https://en.wikipedia.org/wiki/1/N_expansion


3.3. Gauging the QCD Lagrangian

Nc → ∞ , (3.12b)
αsNc = const ≪ 1 . (3.12c)

In this limit, the “S” of SU(Nc) essentially becomes irrelevant (reducing SU(Nc)
to U(Nc)), since the one omitted generator is negligible compared to the
N2

c − 1 ≈ N2
c generators retained as Nc → ∞. This can be clearly seen in the

form of the Fierz identity for SU(Nc)

(ta)i
j (ta)k

ℓ = 1
2δ

i
ℓ δ

k
j − 1

2Nc
δi

j δ
k

ℓ
Nc≫1

≈ 1
2δ

i
ℓ δ

k
j , (3.13)

where the subtraction term enforcing (ta)i
i = 0 drops out.

In the large-Nc limit, the number of gluons N2
c − 1 far exceeds the number

of quarks Nc, so this limit simplifies QCD to effectively contain only gluons. For
gluon-dominated phenomena like small-x gluon saturation, this approximation
is an especially powerful simplification. The simplified Fierz identity (3.13)
allows the adjoint color flow of gluons to be replaced with an equivalent
fundamental color flow, as if the gluon were being replaced by a quark-antiquark
pair3. Moreover, the Feynman diagrams which dominate the large-Nc limit
are always planar, meaning that (in a graph theory sense), all the vertices
and propagators can be laid out flat on a plane, without any lines needing to
cross “underneath” each other to construct the diagram. This can lead to a
tremendous simplification of the color structure and associated operators for
high-energy scattering in QCD, making the large-Nc limit highly advantageous
in QCD. As an approximation to QCD, corrections to the large-Nc limit in real
QCD often occurs at O

(
1/N2

c

)
for physical observables. One would accordingly

expect that the large-Nc limit is accurate at the level of 1/9 ∼ 10%; however,
for many observables, the large-Nc limit works even better in practice than this
naive estimate.

3.3 Gauging the QCD Lagrangian

With the structure of SU(Nc) in hand, we have all the ingredients we need to
construct the QCD Lagrangian following the template of QED. Since the free
multicomponent Dirac Lagrangian (3.1) is invariant under global SU(Nc) color
rotations (3.2), we have

δL = 0 = δL
δψi

δψi + δψ̄i
δL
δψ̄i

+ δL
δ(∂µψi)

δ(∂µψi)

=
(
∂µ

δL
δ(∂µψi)

)
δψi + δL

δ(∂µψi)
∂µ(δψi)

= ∂µ

(
δL

δ(∂µψi)
δψi

)
3Caution: this statement applies only to the color representation, not to any other

quantum numbers such as spin.
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= ∂µ

(
−ψ̄iγ

µϕa(ta)ijψj

)
∴ 0 = ∂µ

(
ψ̄iγ

µ(ta)ijψj

)
, (3.14)

which gives a conserved color current

jµa ≡ ψ̄γµt
aψ (3.15)

for each of the a = 1, . . . , (N2
c − 1) possible “axes” of color rotation.

With the conserved currents, we can introduce the gluon field Aµa by
minimally coupling it to the free Lagrangian (3.1). Adding the term gjµ

aAµa

with g the QCD coupling renders the scalar modes of Aµa unphysical symmetry
transfromations, constructing the Lagrangian

Lgauged = ψ̄(i/∂ −m)ψ + gψ̄γµt
aψ Aµa

= ψ̄

(
iγµ (∂µ − igAµata) −m

)
ψ

= ψ̄

(
i /D −m

)
ψ , (3.16)

where we have defined the gauge-covariant derivative

Dµ ≡ ∂µ − igAa
µt

a . (3.17)

For the Lagrangian (3.16) to be gauge invariant, the covariant derivative
(3.17) must cancel the additional terms entering from a local gauge transforma-
tion. That is, the covariant derivative must satisfy(

Dµψ
)′

≡ eiϕata
(
Dµψ

)
∴ (∂µ − igAa ′

µ t
a)eiϕata

ψ = eiϕata

(∂µ − igAa
µt

a)ψ . (3.18)

Writing the unitary gauge rotation for compactness as U ≡ eiϕata , this gives
the transformation law for the gauge field Aµa as

Aµata = Aµa ′ (U†taU
)

+ i

g
U†(∂µU) , (3.19)

or, equivalently,

Aµa ′ = Aµa + 1
g

(∂µϕa) + fabcAµbϕc . (3.20)

Interestingly, for a non-Abelian gauge theory like QCD, the gauge transformation
includes both the shift of Aµa by a scalar-polarized mode and the rotation of
the gluon color from a to b (depending on the choice of rotation angles ϕc).

The last ingredient in the construction of QCD is the non-Abelian field-
strength tensor, from which we can build the pure gluon term. From the
commutator of the covariant derivatives, we have[

Dµ , Dν

]
=
[
∂µ − igAa

µt
a , ∂ν − igAb

νt
b
]
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3.3. Gauging the QCD Lagrangian

= −ig∂µA
b
νt

b + ig∂νA
a
µt

a − g2Aa
µA

b
ν

[
ta , tb

]
= −ig∂µA

b
νt

b + ig∂νA
a
µt

a − ig2fabcAa
µA

b
ν t

c

= −ig
(
∂µA

c
ν − ∂νA

c
µ + gfabcAa

µA
b
ν

)
tc[

Dµ , Dν

]
≡ −ig F c

µν t
c , (3.21)

where we have defined the non-Abelian field-strength tensor

F c
µν ≡ ∂µA

c
ν − ∂νA

c
µ + gfabcAa

µA
b
ν . (3.22)

By constructing F a
µν in a gauge-covariant way using (3.21), we have produced a

field-strength tensor (3.22) which is more than just the free kinetic part which
occurs in QCD. This is because, unlike in QED, now the free part (∂µA

a
ν −∂νA

a
µ)

is not gauge invariant (or even gauge covariant). Instead, the “chromo-electric”
and “chromo-magnetic” fields are themselves not separately gauge invariant,
transforming as

F ′ a
µν = UF ′ a

µνU† . (3.23)

While the field-strength tensor (3.22) is not gauge invariant, its square still
is. This allows us to immediately write down the QCD Lagrangian,

LQCD = ψ̄(i /D −m)ψ − 1
4F

a
µνF

µν a

= ψ̄(i/∂ −m)ψ − 1
4(∂µA

a
ν − ∂νA

a
µ)(∂µAν a − ∂νAµ a)

+ gψ̄γµt
aψAµa − gfabc Ab

µA
c
ν(∂µAνa)

− 1
4g

2fabcfab′c′
Ab

µA
c
νA

µ b′
Aν c′

. (3.24)

The pure glue part − 1
4F

a
µνF

µν a and the covariant quark part ψ̄(i /D −m)ψ are
separately gauge invariant, leading to the generation of not only the quark-gluon
interaction vertex gψ̄γµt

aψAµa, but also to interactions among the gluons
themselves through the three-gluon vertex gψ̄γµt

aψAµa and four-gluon vertex
−gfabc Ab

µA
c
ν(∂µAνa).
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CHAPTER 4

HUGS 2022 Lecture 4: Introduction
to Small-x Physics (Part 1)

4.1 Previously

• SU(Nc) symmetry of the multicomponent Dirac Lagrangian

• Fundamental representation of SU(3) (Gell-Mann matrices) describes
quarks

• Adjoint representation (structure constants) describes gluons

• The large-Nc limit and its advantages

• Conserved color currents of SU(Nc)

• Non-Abelian covariant derivative and field-strength tensor

• Constructed the QCD Lagrangian

4.2 Profound Implications: The Negative Beta Function

Having constructed the QCD Lagrangian

LQCD = ψ̄(i /D −m)ψ − 1
4F

a
µνF

µν a , (4.1)

we can readily compute the Feynman rules shown in Fig. 4.1. While the
quark/gluon vertex is highly similar to the equivalent QED electron/photon
vertex up to a color factor, the 3-gluon and 4-gluon vertices are entirely new.
Note that the 3-gluon vertex is momentum dependent, arising from its derivative
coupling, while the 4-gluon vertex is momentum independent.

These new gluonic self-interactions have many profound consequences
for QCD, but none is more important than their role in the QCD vacuum
polarization shown in Fig. 4.2. Because of the non-Abelian nature of QCD,
not only fermions (quarks) enter the virtual loops contributing to the vacuum
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igγµt
a

µ , a
gfa1a2a3[gµ1µ2(k1 − k2)

µ3
µ1 , a1

µ3 , a3µ2 , a2
µ1 , a1 µ2 , a2

µ3 , a3 µ4 , a4

−ig2[fa1a2bfa3a4b(gµ1µ3gµ2µ4 − gµ1µ4gµ2µ3)

+gµ2µ3(k2 − k3)
µ1

+gµ3µ1(k3 − k1)
µ2]

+fa1a3bfa2a4b(gµ1µ2gµ3µ4 − gµ1µ4gµ2µ3)

+fa1a4bfa2a3b(gµ1µ2gµ3µ4 − gµ1µ3gµ2µ4)]

Figure 4.1: Feynman rules for the interaction vertices in QCD.

polarization; gluon loops enter as well. And the gluon loops compete with
the quark loops: while the quarks produce a positive contribution to the beta
function (as with electrons in QED), the gluons make a negative contribution
to the beta function:

βg = g3

(4π)2

(
2
3Nf − 11

)
, (4.2)

where Nf is the number of quark flavors entering the loop1. And for Nf = 6
quark flavors at most, the gluons win, resulting in a beta function which is
negative.

This negative beta function is the hallmark of QCD, resulting in a running
coupling αs(Q2) which decreases with increasing momentum scale Q2 – the
opposite of an Abelian theory like QED. This negative beta function results
in both the phenomenon of asymptotic freedom (αs(Q2) → 0 as Q2 → ∞) as
well as confinement (αs(Q2) → ∞ as Q2 → 0). Unlike QED, which possesses
its Landau pole in the UV limit Q2 → ∞, the negative beta function of QCD
places its Landau pole in the IR regime Q2 → 0. This signifies the onset of
the confinement phase transition at nonperturbative coupling in QCD in the
IR, in contrast to the electroweak phase transition of QED in the UV. The
other profound implication of asymptotic freedom is that QCD is a valid, self-
consistent theory up to *infinitely high* momentum scales. What asymptotic
freedom buys us is UV completeness: an essential property of any candidate
fundamental theory of nature, which is elegantly and automatically satisfied by
non-Abelian gauge theories like QCD.

4.3 Quark/Quark Scattering in Regge Kinematics

Scattering Amplitude

As an illustration of how to use the QCD Feynman rules of Fig. 4.1, let us
calculate the cross section for a simple elementary process: elastic quark/quark

1The constants used in Eq. (4.2) are specific to SU(3).
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4.3. Quark/Quark Scattering in Regge Kinematics

Figure 4.2: Effect of the non-Abelian vertices on the QCD running coupling.

p1 , i p′1 , i′

p2 , j p′2 , j′

p1 − p′1 p1 − p′2

p2 , j

p1 , i p′1 , i′

p′2 , j′

Figure 4.3: Quark-quark scattering amplitude to LO in QCD

scattering q+ q → q+ q in QCD as shown in Fig. 4.3. In principle there are two
diagrams: the t-channel amplitude (first diagram) and the u-channel amplitude
(second diagram), which differ by a minus sign due to Fermi-Dirac statistics.
Here we refer to the Mandelstam variables

s ≡ (p1 + p2)2 = (p′
1 + p′

2)2 , (4.3a)
t ≡ (p1 − p′

1)2 = (p′
2 − p2)2 , (4.3b)

u ≡ (p1 − p′
2)2 = (p2 − p′

1)2 , (4.3c)
s+ t+ u = 4m2 , (4.3d)

which compactly describe the kinematics of a 2 → 2 process.
From the Feynman rules of Fig. 4.1, the two amplitudes are:

iM = iMt + iMu (4.4a)

iMt = [ū′
1
(
igγµ(ta)i′i

)
u1]
(

−igµνδab

t

)
[ū′

2
(
igγν(tb)j′j

)
u2]

= ig2

t
(ta)i′i(ta)j′j [ū′

1γµu1][ū′
2γ

µu2] (4.4b)
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4. HUGS 2022 Lecture 4: Introduction to Small-x Physics (Part 1)

iMu = (−1)Fermi[ū′
1
(
igγµ(ta)j′i

)
u2]
(

−igµνδab

u

)
[ū′

2
(
igγν(tb)i′j

)
u1]

= −ig2

u
(ta)j′i(ta)i′j [ū′

1γµu2][ū′
2γ

µu1] (4.4c)

High-Energy Kinematics: The Eikonal Approximation

Suppose we wish to study the behavior of the quark/quark scattering cross
section in the high-energy limit s → ∞. This is the limit relevant for high-
energy collider experiments like the LHC, but we must take care to completely
specify what we mean by this limit. When taking s → ∞, we have two choices
for what can happen to the other Mandelstam invariants. One possibility is
that we increase the collision energy s → ∞ and also the momentum transfer
|t| → ∞ proportionately. This is the hard-scattering limit, referred to as Bjorken
kinematics, in which the scattering angle remains large at high energy because
the exchanged momentum is growing large. In the language of deep inelastic
scattering, this is the large-xB regime. The other possibility is that we can
take s → ∞ while keeping t = const fixed. This is the forward-scattering limit,
known as Regge kinematics, in which the scattering angle decreases toward zero.
In terms of DIS, this corresponds to the small-xB regime.

Let us study the quark/quark cross section in Regge kinematics, for which

s → ∞ , (4.5a)
t = const , (4.5b)
u = 4m2 − s− t → −∞ . (4.5c)

In this limit, the u-channel amplitude (which dominates for back-scattering, the
opposite of Regge kinematics) is completely negligible, giving simply iM ≈ iMt.
This is entirely natural, since the forward-scattering Regge regime is dominated
by t-channel scattering.

In either Bjorken or Regge kinematics, it is very convenient to express the
four-vectors in light-front components, defined by

p± ≡ 1√
2

(p0 ± p3) . (4.6)

In terms of light-front components, four-vector products take the form

p · q = p+q− + p−q+ − p⃗⊥ · q⃗⊥ , (4.7)

and for an on-shell particle with given p+ and p⃗⊥, the on-shell condition fixes
the other light-front component to be

p2 = 2p+p− − p⃗ 2
⊥ = m2

∴ p− = p⃗ 2
⊥ +m2

2p+ . (4.8)
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A particle moving at high energy along the +z axis therefore has p+ ≈
√

2E →
∞ and p− ≈ (p⃗ 2

⊥ + m2)/(2
√

2E) → 0, and vice versa for a particle moving
along the −z axis.

Let us work in the center-of-mass frame with pµ
1 moving along the −z axis

and pµ
2 moving along the +z axis. Then the relevant kinematics are

pµ
1 ≈

(
0+ , p−

1 , 0⃗⊥
)
, (4.9a)

pµ
2 ≈

(
p+

2 , 0− , 0⃗⊥
)
, (4.9b)

p′ µ
1 ≈

(
0+ , p−

1 , p⃗
′
1 ⊥
)
, (4.9c)

p′ µ
2 ≈

(
p+

2 , 0− , −p⃗′
1 ⊥
)
, (4.9d)

where we have enforced momentum conservation p′
2 = p1 +p2 −p′

1. In these high-
energy kinematics, we have approximate conservation of the separate momenta
p−

1 , p
+
2 :

p′ −
1 ≈ p−

1 (4.10a)
p′ +

2 ≈ p+
2 (4.10b)

(4.10c)

with only a small transverse deflection p⃗ ′
1⊥ between them. This high-energy

approximation appropriate for Regge kinematics is referred to as the eikonal
approximation.

Cross Section

p1 , i p′1 , i′

p2 , j p′2 , j′

p1 − p′1

p1 , i

p2 , j

p1 − p′1

Figure 4.4: Cut-diagram representation of the amplitude-squared

Since only the t-channel amplitude contributes in Regge kinematics (“small
x”), to compute the amplitude squared, summed/averaged over all quantum
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numbers, we only need to consider the diagram shown in Fig. 4.4, which gives

⟨M2⟩ ≡ 1
4

∑
s1s′

1s2s′
2

1
N2

c

∑
ii′jj′

(iMt) (iMt)∗

= 1
4N2

c

∑
s1s′

1s2s′
2

∑
ii′jj′

(
ig2

t
(ta)i′i(ta)j′j [ū′

1γµu1][ū′
2γ

µu2]
)

×

(
−ig2

t
(tb)ii′(tb)jj′ [ū1γνu

′
1][ū2γ

νu′
2]
)

= 1
4N2

c

g4

t2

∑
ii′jj′

(ta)i′i(tb)ii′(ta)j′j(tb)jj′

×
∑
s1s′

1

[ū′
1γµu1][ū1γνu

′
1]
∑
s2s′

2

[ū′
2γ

µu2][ū2γ
νu′

2]

= 1
4N2

c

g4

t2
tr[tatb] tr[tatb]tr[/p′

1γµ/p1γν ]tr[/p′
2γ

µ
/p2γ

ν ] . (4.11)

The spin sums are converted into traces in the usual way, as in QED2, while
the color traces can be evaluated for general Nc using the identities

tr[tatb] = 1
2δ

ab , (4.12a)

tata = Cf 1 ≡ N2
c − 1
2Nc

1 , (4.12b)

tr[1] = Nc , (4.12c)

giving

tr[tatb] tr[tatb] = 1
2tr[tata] = 1

2CF tr[1] = NcCF

2 . (4.13)

Then the amplitude squared is

⟨M2⟩ = 4
N2

c

g4

t2
NcCF

2

(
p′ µ

1 pν
1 + p′ ν

1 pµ
1 − (p1 · p′

1)gµν
)(
p′ µ

2 pν
2 + p′ ν

2 pµ
2 − (p2 · p′

2)gµν
)

= 4g4

t2
CF

2Nc

(
2(p1 · p2)(p′

1 · p′
2) + 2(p1 · p′

2)(p2 · p′
1) − 4(p1 · p′

1)(p2 · p′
2)
)

2Here we use the massless approximation for the quarks, which is appropriate for high-
energy kinematics.
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= 4g4

t2
CF

2Nc

(
2( s

2 )2 + 2(− u
2 )2 − 4(− t

2 )2
)

≈ 4g4

t2
CF

2Nc

(
2( s

2 )2 + 2(+ s
2 )2
)

⟨M2⟩ ≈ 4g4 CF

2Nc

s2

t2
(4.14)

where we have simplified the kinematics according to the Regge limit.
Given this expression for the amplitude squared, the corresponding

differential cross section is

dσ = 1
2E12E2|v⃗1 − v⃗2|

d3p′
1

(2π)32E′
1

d3p′
2

(2π)32E′
2

⟨M2⟩(2π)4 δ4(p1 + p2 − p′
1 − p′

2) .

(4.15)

In Regge kinematics, the flux prefactor is

1
2E12E2|v⃗1 − v⃗2|

= 1
8E1E2

= 1
4p−

1 p
+
2

= 1
4p1 · p2

= 1
2s , (4.16)

and we can change variables to light-front coordinates in the phase space and
delta function, giving

dσ = 1
2s
d2p′

1 ⊥ dp
′ −
1

2p′ −
1

d2p′
2 ⊥ dp

′ +
2

2p′ +
2

⟨M2⟩
(2π)2 δ(p

+
2 − p′ +

2 )δ(p−
1 − p′ −

1 )δ(p⃗′
1 ⊥ + p⃗′

2 ⊥) .

(4.17)

We can exhaust the constraints of the delta function by integrating over p′ −
1 ,

p′ +
2 , and p⃗ ′

2 to obtain

dσ

d2p ′
1⊥

= 1
2s

1
4p−

1 p
+
2

⟨M2⟩
(2π)2

= 1
(2s)2

⟨M2⟩
(2π)2 . (4.18)

Finally, we insert the expression (4.14) for the amplitude squared, obtaining

dσ

d2p ′
1⊥

= 4α2
s

CF

2Nc

1
p ′ 4

1⊥
. (4.19)

in terms of αs ≡ g2/4π and using t ≈ −p′ 2
1⊥. For QCD with Nc = 3, we have

CF = 4/3 and CF

2Nc
= 2

9 .
The eikonal approximation (high-energy / small-x / Regge kinematics) has

substantially simplified the cross section (4.19). Most importantly, the cross
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section for t-channel scattering at high energies is unsuppressed as s → ∞. This
is a general feature of high-energy scattering: the interactions are dominated by
the exchange of vector bosons (such as gluons). Other processes mediated by the
exchange of quarks (or even scalars in the case of scalar QCD) are suppressed
by powers of s as s → ∞, such that eikonal scattering is always dominated by
gluon exchange. The gluons which mediate this high-energy scattering exchange
no p−

1 or p+
2 momenta between the high-energy quarks, essentially carrying only

transverse momenta:

qµ ≡ (p1 − p′
1)µ ≈

(
0+ , 0− , −p⃗ ′

1⊥
)
. (4.20)

These exchanged transverse gluons are referred to as Glauber gluons or Coulomb
gluons, for which the only relevant dynamics is transverse to the eikonal collision
axis.
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CHAPTER 5

HUGS 2022 Lecture 5: Introduction
to Small-x Physics (Part 2)

5.1 Previously

• QCD Feynman rules

• QCD negative beta function: asymptotic freedom / confinement

• QCD as our best template for a UV-complete theory of nature

• Regge kinematics (s ≫ |t| ≫ Λ2
QCD) vs. Bjorken kinematics (s ∼ |t| ≫

Λ2
QCD)

• Light-front coordinates p±

• t-channel quark/quark scattering in the eikonal approximation

• Gluon-mediated scattering is unsuppressed by s as s → ∞

5.2 Radiative Corrections: Soft QCD Bremsstrahlung

Having computed the cross section for elastic 2 → 2 scattering of quarks
(q + q → q + q) in eikonal kinematics, let us next proceed to study particle
production in this limit. The dominant mechanism of particle production in
eikonal kinematics is the radiation of soft gluon bremsstrahlung as an NLO
correction to the elastic scattering cross section we computed previously.

The Feynman diagrams generating the leading contribution to q+q → q+q+g
are shown in Fig. 5.1. There are 5 diagrams in total. Four of them (A-D) are
totally analogous to the radiation of soft photons in QED; they consist of initial-
and final-state radiation which can be emitted either from the “projectile” (p1)
or the “target” (p2). The last diagram (E) is uniquely non-Abelian, in which
the exchanged gluon itself undergoes bremsstrahlung.

As before, let us consider the case of eikonal scattering in Regge kinematics:
p−

1 , p
+
2 ∼

√
s → ∞. We will moreover focus on the case when the radiated
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C D E

A B

Figure 5.1: Feynman diagrams contributing to the scattering amplitude iM for
the 2 → 3 radiative process q + q → q + q + g. The sum of all the diagrams
is represented by the thick effective vertex on the left, known as the Lipatov
vertex.

gluon is “longitudinally soft,” meaning that its light-front momenta k+, k− are
both small compared to the momenta of the incoming particles:

p−
1 ≫ k− ≫ p−

2 , (5.1a)
p+

2 ≫ k+ ≫ p+
1 . (5.1b)

When expressed in terms of the rapdity

y = 1
2 ln k

+

k− (5.2)

this means that we are looking at particle production at mid-rapidity y2 ≫
y ≫ y1. Particle production in this regime preserves the eikonal approximation
because the radiated gluon does not disturb the flow of large p−

1 and p+
2 through

the diagram. This limit is also the limit in which the longitudinal momentum
fraction called (Feynman) x is small:

xF ≡ k+

p+ ≪ 1 . (5.3)

This is one of the meanings of “small x physics.”

Initial- vs. Final-State Radiation: Kinematics

Let us now compute in detail the final- and initial-state radiation diagrams A
and B shown in Fig. 5.2. First let us specify the kinematics. For the incoming
particles we have the same setup as before:

pµ
1 =

(
0+ , p−

1 , 0⃗⊥
)
, (5.4a)
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k , λ , a

p1 , i p1 − k − q , i′

p2 , j p2 + q , j′

q

p1 − kBp1 , i p1 − k − q , i′

p2 , j p2 + q , j′

q

p1 − qA

k , λ , a

Figure 5.2: Initial-state (B) and final-state (A) radiation amplitudes for
bremsstrahlung off the “projectile” p1.

pµ
2 =

(
p+

2 , 0 , 0⃗⊥
)
, (5.4b)

while the momenta kµ, qµ are constrained by the on-shell conditions of the 3
final-state particles. For kµ this gives

kµ =
(
k+ ,

k2
⊥

2k+ , k⃗⊥
)
, (5.5)

and for qµ we deduce the values of q± from the on-shell conditions of the
outgoing quarks:

q+ = p+
1 − k+ − (p1 − k − q)+

≈ −k+ , (5.6a)

q− = (p2 + q)− − p−
2

q− ≈ q2
⊥

2p+
2
. (5.6b)

Altogether, this gives the eikonal kinematics as

pµ
1 =

(
0+ , p−

1 , 0⃗⊥
)
, (5.7a)

pµ
2 =

(
p+

2 , 0 , 0⃗⊥
)
, (5.7b)

kµ =
(
k+ ,

k2
⊥

2k+ , k⃗⊥
)
, (5.7c)

qµ =
(

− k+ ,
q2

⊥
2p+

2
, q⃗⊥

)
. (5.7d)

With the eikonal kinematics (5.7), it is straightforward to compute the
virtualities of the intermediate-state particles for diagrams A and B. The
exchanged gluon is the same for both diagrams:

q2 = 2q+q− − q2
⊥

= −k+

p+
2
q2

⊥ − q2
⊥

≈ −q2
⊥ , (5.8)
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just as with the elastic scattering process we computed before. The intermediate
quark propagators are different for the two diagrams, giving

(p1 − q)2 = 2(p+
1 − q+)(p−

1 − q−) − (p⃗1⊥ − q⃗⊥)2

≈ 2(0+ + k+)(p−
1 − q2

⊥
2p+

2
) − q2

⊥

(p1 − q)2 ≈ 2k+p−
1 , (5.9a)

(p1 − k)2 = 2(p+
1 − k+)(p−

1 − k−) − (p⃗1⊥ − q⃗⊥)2

≈ 2(0+ − k+)(p−
1 − k2

⊥
2k+ ) − q2

⊥

≈ −2k+p−
1 . (5.9b)

Crucially, the virtualities of these two intermediate states are exactly opposite
in the high-energy limit, and this virtuality is small compared to the collision
energy s:

(p1 − q)2 = −(p1 − k)2 = 2k+p−
1 ≪ 2p+

2 p
−
1 = s . (5.10)

This shows that the kinematics of the two diagrams are identical, but different
by a sign accounting for the fact that the propagator is timelike for diagram A
but spacelike for diagram B.

Initial- vs. Final-State Radiation: Amplitudes

The evaluation of the amplitudes for diagrams A and B is now straightforward.
For diagram A we have

iMA = [ū′
1
(
ig/ϵ

∗
λ(ta)i′i′′

)( i(/p1 − /q)
(p1 − q)2

)(
igγµ(tb)i′′i

)
u1]

×

(
−igµνδbb′

q2

)
[ū′

2
(
igγν(tb

′
)j′j

)
u2]

= +ig3

q2
⊥ (2k+p−

1 )
(tatb)i′i(tb)j′j [ū′

1/ϵ
∗
λ(/p1 − /q)γµu1][ū′

2γ
µu2] . (5.11)

Rather than proceeding to square this amplitude (with all the messy
interferences), let us proceed to evaluate the numerator algebra in the eikonal
approximation here, at the amplitude level. For instance, both the incoming
momentum p2 and outgoing momentum p′

2 = p2 + q are overwhelmingly
dominated by the light-front component p+

2 → ∞. Since pµ
2 ≈ p′ µ

2 ≈
(p+

2 , 0−, 0⃗⊥), we can employ the simplified version of the Gordon identity1

[ūpsγ
µups′ ] = 2pµ δss′ (5.12)

1Note that here we consider the forward limit of the matrix element p′ = p. The full form
of the Gordon identity also includes other terms proportional to (p − p′).
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to directly evaluate the spinor product for the target:

[ū′
2γ

µu2] ≈ 2p+
2 δ

µ
+ δs2s′

2
. (5.13)

This sets µ = + in the spinor matrix element for the projectile (note that
γ+ = γ−), and we can further eikonalize the spinor matrix element:

[ū′
1/ϵ

∗
λ(/p1 − /q)γ−u1] ≈ p−

1 [ū′
1/ϵ

∗
λγ

+γ−u1]
= p−

1 [ū′
1/ϵ

∗
λ{γ+, γ−}u1]

= 2p−
1 [ū′

1/ϵ
∗
λu1]

= 2p−
1 (ϵ∗λ)µ[ū′

1γ
µu1]

≈ 2p−
1 (ϵ∗λ)µ(2p−

1 δ
µ

− δs1s′
1
)

= (2p−
1 )2(ϵ∗λ)+δs1s′

1
(5.14)

where we have used the Dirac equation

/p1u1 = p−
1 γ

+u1 = 0
∴ γ+u1 = 0 (5.15)

for the incoming quark. Substituting these results back into (5.11) gives

iMA = +ig3

q2
⊥ (2k+p−

1 )
(tatb)i′i(tb)j′j

(
2p+

2 δs2s′
2

)(
(2p−

1 )2(ϵ∗λ)+δs1s′
1

)

= ig3 2s
q2

⊥

(ϵ∗λ)+

k+ (tatb)i′i(tb)j′j δs1s′
1
δs2s′

2
. (5.16)

In a similar way, we can evaluate amplitude B in the eikonal approximation:

iMB = [ū′
1
(
igγµ(tb)i′i′′

)( i(/p1 − /k)
(p1 − k)2

)(
ig/ϵ

∗
λ(ta)i′′i

)
u1]

×

(
−igµνδbb′

q2

)
[ū′

2
(
igγν(tb

′
)j′j

)
u2]

= +ig3

q2
⊥ (−2k+p−

1 )
(tbta)i′i(tb)j′j [ū′

1γµ(/p1 − /k)/ϵ∗
λu1][ū′

2γ
µu2]

= +ig3

q2
⊥ (−2k+p−

1 )
(tbta)i′i(tb)j′j [ū′

1γ
−(/p1 − /k)/ϵ∗

λu1](2p+
2 δs2s′

2
)

= −ig3 2p−
1 p

+
2

q2
⊥

1
2k+p−

1
(tbta)i′i(tb)j′j δs2s′

2
[ū′

1γ
−γ+/ϵ

∗
λu1]
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= −ig3 2s
q2

⊥

1
2k+p−

1
(tbta)i′i(tb)j′j δs2s′

2
[ū′

1/ϵ
∗
λu1]

iMB = −ig3 2s
q2

⊥

(ϵ∗λ)+

k+ (tbta)i′i(tb)j′j δs1s′
1
δs2s′

2
. (5.17)

Discussion

Comparing the final-state radiation diagram iMA from Eq. (5.16) with the
inital-state radiation diagram iMB , from Eq. (5.17), we make several interesting
observations:

• These two amplitudes are almost identical, owing to the eikonal kinematics
of the Regge scattering. The dependence on all kinematic variables is the
same.

• The amplitudes are proportional to 1/k+, and since k+ ≪ p+
2 is a soft

momentum scale, the amplitude to radiate a soft gluon is parametrically
large.

• The eikonal limit is in general spin-independent. This means we must
work harder and include sub-eikonal corrections if we want to describe
the behavior of spin asymmetries in Regge kinematics.

• The two amplitudes differ by a minus sign. This sign difference came from
Eq. (5.10), arising because the only kinematic difference between the two
amplitudes is that for diagram A, the propagator is timelike (k+ and p−

1
flowing in the same direction), while for diagram B, it is spacelike (k+

and p−
1 flowing in opposite directions).

• Aside from the minus sign, the only other difference between the two
amplitudes is the order of the two color rotations of the projectile quark.
For diagram A, the scattering occurs before the radiation, leading to the
combined color rotation (tatb)i′i. For diagram B, the radiation vertex
occurs first, leading to (tbta)i′i

• In the eikonal approximation, both amplitudes to radiate the gluon from
the projectile are proportional to the polarization vector (ϵ∗λ)+. This
means that if we strategically choose a gauge such that (ϵ∗λ)+ = 0 (the
light-front gauge A+ = 0), then iMA = iMB = 0. This allows us to
suppress radiation from the projectile in this special gauge, leaving only
contributions from the other diagrams C, D, E. The same is true for the
target: choosing the light-front gauge A− = 0 suppresses radiation from
the target, resulting in iMC = iMD = 0. An appropriate choice of gauge
like this can drastically simplify the calculation.

32



5.2. Radiative Corrections: Soft QCD Bremsstrahlung

• Diagrams C and D, being mirror images of A and B, can be trivially
obtained from Eqs. (5.16) and (5.17) by appropriate substitution of the
momenta.

Understanding the general form of the bremsstrahlung amplitude in eikonal
kinematics leads to a profound difference between the radiation pattern produced
by QED and by QCD. Adding the two amplitudes together, we obtain

iMA + iMB = ig3 2s
q2

⊥

(ϵ∗λ)+

k+

(
(tatb)i′i − (tbta)i′i

)
(tb)j′j δs1s′

1
δs2s′

2

= ig3 2s
q2

⊥

(ϵ∗λ)+

k+

[
ta, tb

]
i′i

(tb)j′j δs1s′
1
δs2s′

2

= ig3 2s
q2

⊥

(ϵ∗λ)+

k+

(
ifabc(tc)i′i

)
(tb)j′j δs1s′

1
δs2s′

2

= −g3 fabc(tc)i′i(tb)j′j
2s
q2

⊥

(ϵ∗λ)+

k+ δs1s′
1
δs2s′

2
. (5.18)

The relative minus sign between the initial-state- and final-state-radiation
diagrams, together with the reversed order of the color rotations, has produced
a commutator of the color matrices. This changes the combined color structure
to something proportional to the structure constants fabc – exactly of the same
form as diagram E containing the triple-gluon vertex. Thus all of the diagrams
A-E can be combined into a single structure with an effective 3-gluon vertex,
known as the Lipatov vertex, as depicted in Fig. 5.1.

The difference here between QED and QCD could not be more pronounced.
In QCD, the initial-state radiation diagrams combine with the final-state
radiation diagrams in a systematic way, leading to parametrically large rate
of particle production at high energies. But in QED, without the presence of
the non-Abelian SU(Nc) generators, the amplitudes simply cancel instead, and
diagram E does not exist. For electron/electron scattering in QED at high
energies, no net photon radiation is produced, and the Regge limit is trivial and
uninteresting. This just corresponds to the familiar semi-classical statement
that an electron must accelerate to produce radiation, and since s → ∞ with
t fixed, the scattering angle goes to zero and the electrons do not accelerate.
But in QCD, the quarks have an internal color degree of freedom as well as
their kinematic variables. Unlike electrons, quarks can “accelerate” in color
space, leading to a proliferation of soft gluon radiation at mid rapidity. Thus
the high-energy Regge limit (small xF ) is uniquely sensitive to the non-Abelian
nature of QCD. And, moreover, any non-Abelian gauge theory (not just QCD)
will produce an abundance of soft gluon radiation – directly as a consequence
of the non-commutative vertex.
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Cross Section

A complete calculation of all the diagrams in Fig. 5.1 leads to the full amplitude

iM = −g3 fabc(tc)i′i(tb)j′j
4s
q2

⊥
(ϵ∗λ)µ

(
kµ

⊥
k2

⊥
−

(k + q)µ
⊥

(k + q)2
⊥

)
. (5.19)

As promised, this diagram has the color structure of the 3-gluon vertex, along
with a characteristic transverse momentum dependence which defines the
Lipatov vertex. Squaring the amplitude and summing/averaging over the
spin and color quantum numbers yields

⟨|M|2⟩ = 8g3CF
s2

q2
⊥ k

2
⊥ (k + q)2

⊥
(5.20)

and to the differential cross section
dσ

d2k⊥ d2q⊥ dy
= 2α3

sCF

π2
1

q2
⊥ k

2
⊥ (k + q)2

⊥
. (5.21)

Some features of this cross section, like its transverse momentum dependence,
are specific to the choice of quark/quark scattering. These will be modified
in more realistic choices of in/out states, such as color-neutral dipoles or real
protons. But the rapidity (in)dependence of the cross section is quite generic,
following simply from the eikonal approximation and the form of the quark/gluon
vertex in QCD.2

The result is that leading-order QCD predicts a spectrum of soft gluon
radiation which is uniform at mid-rapidity:

dNg

dy
∝ dσ

dy
= const , (5.22)

which is exactly what is seen experimentally from particle production at mid-
rapidity in high-energy hadronic collisions (Fig. 5.3). We find that QCD produces
an abundance of soft gluon radiation at high energies which is boost-invariant
(rapidity-independent) at leading power in the eikonal expansion.

Even more profoundly, that constancy of the gluon spectrum with rapidity
sets up a dynamic competition between the parametrically small probability
to emit a gluon in perturbative QCD (αs ≪ 1) and the large phase space of
rapidity available to the gluon. For the inclusive cross section q+ q → q+ q+X
where X can be anything, the q + q → q + q + g cross section is an NLO
correction to the elastic process q+q → q+q. This nominally NLO correction is
suppressed by a factor of αs compared to the elastic process, but it is enhanced
by an integral over the available rapidity window between the rapidity Y1 of
the projectile and the rapidity Y2 of the target:

σqq→qqg

σqq→qq
∼ αs

Y2∫
Y1

dy = αs(Y2 − Y1) . (5.23)

2The same rapidity independence also arises from bremsstrahlung emitted from eikonal
gluons.
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Figure 5.3: A uniform distribution of hadrons at mid-rapidity measured by
the CMS Collaboration, in excellent agreement with our expectations from the
tree-level calculation in QCD.

That rapidity interval is

Y2 − Y1 = 1
2 ln p

+
2
p−

2
− 1

2 ln p
+
1
p−

1

= 1
2 ln p

−
1 p

+
2

p+
1 p

−
2

= 1
2 ln (s/2)

(m4/2s)
= ln s

m2 , (5.24)

so that the total contribution of the soft gluon bremsstrahlung to the inclusive
cross section is

σqq→qqg

σqq→qq
∼ αs ln s

m2 . (5.25)

If the center-of-mass energy s is large, but not exponentially large, ln s
m2 ∼ O (1)

and the correction (5.25) is just a small NLO correction to the elastic process,
consistent with perturbation theory. But if s becomes exponentially larger
than m2, then ln s

m2 ≫ 1 begins to compete with the smallnes of the coupling
constant αs. When the phase space becomes sufficiently large that

αs ln s

m2 ∼ 1 (5.26)

then the NLO bremsstrahlung amplitude is of the same order as the LO elastic
process. And two sequential emissions of appropriately soft bremsstrahlung are
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also of the same order as the LO process. And so on, for any number of soft
gluon emissions. In this limit, describing a cascade of small-xF gluons, the large
logarithms must be resummed to all orders. This results in a massive increase in
the gluon density and in the abundance of particle production at high energies
(synonymous with small x). The differential equation which expresses that
leading-logarithmic resummation of soft gluon emission is known as the BFKL
equation (Balitsky-Fadin-Kuraev-Lipatov), and its prediction of rapidly growing
gluon densities in hadronic systems drives high-energy QCD toward the limit
of nonlinear, high-density physics.
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