Hampton University Graduate School (HUGs) June 2022, JLab, Newport News, VA.

#### Lecture3:

Introduction to Short Range CorrelationsShort-range Correlation Studies

- (e,e') measurements
- (e,e'NN) measurement
- Neutron-rich nuclei

## What are Short Range Correlations (SRCs) ?

# Nucleon pairs that are close together in the nucleus





# high *relative* and lower *c.m.* momentum compared to k<sub>F</sub>

# Why SRC?

# Required for a high-resolution, first principle, description of nuclear systems & processes.







### SRCs cross scales









# Looking For Correlations





Wiringa, PRC (2014); Carlson, RMP (2015); ...





### How can we study SRCs?



What is the expectation?

Universal High-Momentum Tail



High momentum tail has the same shape, only different by a scaling factor

## Inclusive cross section



High momentum tail will yield constant ratio in region where SRCs dominant

#### High-momentum scaling factors



Scaling constant: *a*<sub>2</sub>

$$\sigma_A = \mathbf{a_2} \times \frac{A}{2} \sigma_D$$

Relative probability of finding SRC pairs in different nuclei compared to the Deuterium

Schmookler Nature (2019), Fomin PRL (2008), Egiyan PRL (2006), Egiyan PRC (2003), L. L. Frabkfurt, PRC (1993)

### SRCs is responsible for high-momentum tail



## What are the next questions?

□ What are the properties of SRC?

□ What about *c.m.* momentum?

**What type of pairs?** 

# Exclusive Two-nucleon knockout studies



□ Breakup the pair and detect both nucleon

> Looking for High missing-momentum nucleon ( $k > k_F$ ) and recoil partner

## Hall-A: High-Resolution Spectrometers



# Hall-A: A(e,e'pN)



# Hall-A: A(e,e'pN)





# CEBAF Large Acceptance Spectrometer







Hall B Large Acceptance Spectrometer

Open (e,e') trigger, Large-Acceptance, Low luminosity (~10<sup>34</sup> cm<sup>-2</sup> sec<sup>-1</sup>)

### Proton vs. Neutron Knockout



## SRCs in 2-nucleon knockout





Almost all proton with  $k > k_F$  in C(e,e'p) have a paired proton or neutron with similar momentum in opposite direction.

#### The CM momentum distribution of SRCs pairs



Cohen et al., PRL (2018)

# SRCs is Isospin dependence

Simple SRCs model: SRCs are assumed to be isospin independent





#### SRCs: np pair dominate pp pairs by a factor of ~ 20 times

# SRCs: np dominance established for a wide range of nuclei



O. Hen, Science (2014)

M. Duer et al., PRL (2019)

### Also seen in ab-initio pair distributions



### Also seen in ab-initio pair distributions



# What we have learned about SRCs?

- □ SRCs is responsible for high-momentum tail
- □ SRCs accounts for ~20% of nucleon
- □ SRC pairs are back-to-back with small C.M.
- □ np pairs dominate over pp-pairs by ~ x20

in nuclei from <sup>4</sup>He – Pb

What about neutron-rich nuclei?

# Going to Neutron rich nuclei:

What can we learn?

□ Nuclear asymmetry-dependence

Separated contribution of proton and neutron

#### What happens to SRCs in Neutron-rich nuclei?



#### What happen to SRCs in Neutron-rich nuclei?



#### What happen to SRCs in Neutron-rich nuclei?



#### What happen to SRCs in Neutron-rich nuclei?



# Going to Neutron rich nuclei:

What do excess neutrons do?



# n/p ratio for high-momentum nucleon is a constant with asymmetry



Duer et al., Nature (2018)

#### Proton "speed up" in neutron-rich nuclei

 $\frac{\sigma_{\mathsf{SRC}}^{\mathsf{A}}(e,e'N)}{\sigma_{\mathsf{MF}}^{\mathsf{A}}(e,e'N)} \big/ \frac{\sigma_{\mathsf{SRC}}^{\mathsf{C}}(e,e'N)}{\sigma_{\mathsf{MF}}^{\mathsf{C}}(e,e'N)}$ 



# Protons are more correlated in neutron-rich nuclei



# Proton "speed up" in neutron-rich nuclei



# Proton "speed up" in neutron-rich nuclei



## More studies from Ca isotopes



#### **Open Questions:**

□ What correlations do the outer  $f_{7/2}$  neutrons form in <sup>48</sup>Ca?

Does <sup>48</sup>Ca have more Protons in SRCs?

□ If so, with what fraction?

#### Absolute (e,e') cross-section measurement



D. Nguyen et al. PRC (2020)

#### More pairs in <sup>48</sup>Ca!



D. Nguyen et al., PRC(2020).

### CaFe (e,e'p): Understand pairing probability

#### We can answer questions:

Does <sup>48</sup>Ca has more Proton in SRCs?

□ What is Proton high-momentum fraction?





**8 Neutrons** 

v

11

v

тi

Sc

v

тi

Sc

v

Тi

v

Тi

Sc

40**~** 

48Ca







Protons may have an outsize influence on the properties of <u>neutron stars</u> and other <u>neutron-rich objects</u>



Protons strongly influence the behaviour of neutron stars







#### GIZMODO

Surprising Accelerator Finding Could Change the Way We Think About <u>Neutron Stars</u>