Hampton University Graduate School (HUGs) June 2022, JLab, Newport News, VA.

Also seen in ab-initio pair distributions

Schmidt et al., Nature (2020)

Schmidt et al., Nature (2020)

Schmidt et al., Nature (2020)

Overview: Deep Inelastic Scattering (DIS)

Structure Functions

EMC Effect

- Interacting nucleon destroyed
- Interaction with <u>Parton</u> (quark) inside the nucleon
- $\Box \text{ Cross-section depends on Nucleon structure function } \mathbf{F}_2$ $\frac{d^2\sigma}{d\Omega dE'} = \sigma_A = \frac{4\alpha^2 E'^2}{Q^4} \left[2\frac{F_1}{M} \sin^2\left(\frac{\theta}{2}\right) + \frac{F_2}{V} \cos^2\left(\frac{\theta}{2}\right) \right] \approx K(E, \theta, E') F_2(x)$

Partonic Structure

What F₂ can tell us about the nucleon $F_2(x,Q^2) = \sum_i e_i^2 \cdot x \cdot f_i(x)$

What F₂ can tell us about the nucleon $F_2(x,Q^2) = \sum e_i^2 \cdot x \cdot f_i(x)$ Three bound 0.6 valance quarks 0.5 0.4 $F_2(x)$ 0.3 0.2 0.1 0

0.8

1

0.2

0

0.4

0.6

Momentum fraction x

What F₂ can tell us about the nucleon $F_2(x,Q^2) = \sum_i e_i^2 \cdot x \cdot f_i(x)$

Decade of measurement gives us Proton's F_2 and PDFs

What is F₂ for a nucleus A

$$F_2^A = Z F_2^P + N F_2^N ??$$

Questions:

- 1. Do quarks move differently in Nuclei?
- 2. Does the nuclear environment affect quark?

Quark and Nuclei are scale-separated

The scale of GeV

The scale of MeV

Naive expectation :

Bound nucleon = Free nucleon

(Except some small Fermi motion correction)

Question: What is the <u>simplest</u> example of nuclear interaction affecting partonic properties?

<u>**Question:**</u> What is the <u>simplest</u> example of nuclear interaction affecting partonic properties?

Answer:

The nuclear interaction that binds the deuteron also makes the neutron stable.

- Simplest nuclear system = Deuteron,
- Free neutron is unstable: decays in ~ 10 minuets,
- Bound in the Deuteron, a neutron can live forever!

The nuclear environment affects quarks!

The nuclear environment affects quarks!

The EMC effect!

□ Size of EMC effect is characterized by the slope

'Global' EMC Data

EMC Effect increases with Nuclear Size

'Global' EMC Data

Effect driven by nuclear structure & dynamics

Correlations Between EMC and SRC

Correlations Between EMC and SRC

EMC-SRC model

Hypothesis:

- EMC effect as being due entirely to the modification of SRC-pair
- Based on the isospin dominance of SRCs => Modification of np-SRC pair

EMC-SRC model predicts that the modification of SRCs should be universal! $F_2^A = ZF_2^p + NF_2^n + n_{SRC}^A(\Delta F_2^p + \Delta F_2^n)$

 $F_2^d = F_2^p + F_2^n + n_{SRC}^d \left(\Delta F_2^p + \Delta F_2^n \right)$

EMC ratio

$$\frac{F_2^A/A}{F_2^d/2} = (a_2 - 2\frac{N}{A})\left(n_{SRC}^d \frac{\Delta F_2^p + \Delta F_2^n}{F_2^d}\right) + 2 \cdot \frac{Z - N}{Z + N} \cdot \frac{F_2^p}{F_2^d} + 2\frac{N}{A}, \text{ where } a_2 = \frac{n_{SRC}^A/A}{n_{SRC}^d/2}.$$

Nucleus-independent

Schmookler, Nature (2019)

EMC-SRC model predicts that the modification of SRCs should be universal!

The EMC effect can be described by the universal modification of SRC pairs

Schmookler, Nature (2019)

Tagged DIS on Deuterium

- "Tag" interacting nucleon by measuring recoil spectator
- Measure dependence of bound nucleon structure function on nucleon momentum

DIS Recoil Tagging d(e,e'N)X - Expected Results

Recoil spectator momentum [GeV/c]

Tagged DIS at JLab

Hall B: CLAS 12 + Backward Angle Neutron Detector (BAND)

Tagged DIS at JLab

Hall B: CLAS 12 + Backward Angle Neutron Detector (BAND) Hall C: SHMS/HMS + Large Angle Detector (LAD)

DIS Recoil Tagging d(e,e'N)X - Expected Results

Recoil spectator momentum [GeV/c]

SRCs has many implication

Proton visualization

https://www.youtube.com/watch?v=G-9I0buDi4s