Hampton University Graduate School (HUGs) June 2022, JLab, Newport News, VA.

What we have learned about SRCs?

- □ SRCs is responsible for high-momentum tail
- □ SRCs accounts for ~20% of nucleon
- □ SRC pairs are back-to-back with small C.M.
- □ np pairs dominate over pp-pairs by ~ x20

in nuclei from ⁴He – Pb

What about neutron-rich nuclei?

Proton "speed up" in neutron-rich nuclei

 $\frac{\sigma_{\mathsf{SRC}}^{\mathsf{A}}(e,e'N)}{\sigma_{\mathsf{MF}}^{\mathsf{A}}(e,e'N)} \big/ \frac{\sigma_{\mathsf{SRC}}^{\mathsf{C}}(e,e'N)}{\sigma_{\mathsf{MF}}^{\mathsf{C}}(e,e'N)}$

Protons are more correlated in neutron-rich nuclei

Protons may have an outsize influence on the properties of <u>neutron stars</u> and other <u>neutron-rich objects</u>

Protons strongly influence the behaviour of neutron stars

GIZMODO

Surprising Accelerator Finding Could Change the Way We Think About <u>Neutron Stars</u>

Nucleon-Nucleon (NN) interactions (e,e'p) measurement on A=3

□Short Range Correlations and EMC effect

□ Proton visualization

Why Nucleon-nucleon interaction?

Crucial for:

- Ab-Initio structure & reaction calculations
- Dense astrophysical objects, e.g. neutron stars
- □ Any calculation related to nuclear interaction

There are many NN potential models...

- Hamada-Johnston Potential
- Yale-Group Potential
- Reid68 Potential
- Reid-Day Potential
- Partovi-Lomon Potential
- Paris-Group Potentials
- Stony-Brook Potential
- dTRS Super-Soft-Core Potentials
- Funabashi Potentials
- Urbana-Group Potentials
- Argonne-Group Potentials
 - Argonne V14
 - Argonne V28
 - Argonne V18
- Bonn-Group Potentials
 - Full-Bonn Potential
 - CD-Bonn Potential
- Padua-Group Potential
- Nijmegen-Group Potentials
 - Nijm78 Potential
 - Partial-Wave-Analysis
 - Nijm93
 - Nijml

- Nijmll
- Reid93 Potential
- Extended Soft-Core
- Nijmegen Optical Potentials
- Hamburg-Group Potentials
- Moscow-Group Potentials
- Budapest(IS)-Group Potential
- MIK-Group Potential
- Imaginary Potentials
- QCD-Inspired Potentials
- The Oxford Potential
- The First CHPT NN Potentials
- Sao Paulo-Group CHPT Potentials
- Munich-Group CHPT Potentials
- Idaho-Group CHPT Potentials
- Bochum-Julich-Group CHPT Potentials
 - LO Potentials
 - NLO Potentials
 - NNLO Potentials
 - NNNLO Potentials
- and more!

Overall consistent at long-r/ small-k

Probability to find two nucleons with relative distance r

Probability to find two nucleons with relative momentum q.

Large model dependence at small-r/high-k

Probability to find two nucleons with relative momentum q.

Need to put these to test

Large model dependence at small-r/high-k

Need to put these to test

Testing Reaction Mechanism & NN models

Measure nucleon-knockout cross-section

Compare with calculation using different NN interactions and modeling of reaction

□See which one works the best

Light Nuclei: The ideal lab to study NN

Why A=3 nuclei?

□ Exactly calculable

- Mirror nuclei
 - Proton in ³He = Neutron in ³H
 - Constraints reaction mechanism

- Better to study proton in 3H than neutron in 3He
- Ideal case: Test and benchmark theory

Quasi-elastic scattering (e,e'p)

□ Missing momentum:

$$\vec{P}_{miss} = \vec{P}_f - \vec{q}$$

Plane-Wave Impulse Approximation (PWIA)
Momentum transfer absorber by a single nucleon

Knocked-out nucleon did not re-scatter as it left the nucleus

$$\vec{P}_{miss} = \vec{P}_i$$

High Q² factorization

p_f

A= 3

$$\sigma = K \sigma_{ep} S(|\vec{P_i}|, E_i)$$

Previous studies and non-QE mechanisms

F. Benmokhtar et al., PRL (2005)

Data is useful to study reaction mechanism, not nucleon distributions.

Previous studies and non-QE mechanisms

□ Non-QE mechanisms can be minimized using selected kinematic region

Minimizing non-QE mechanisms

M. M. Sargsian, Int. J. Mod. Phys. E10 (2001) M. M. Sargsian et al., J. Phys. G29, R1 (2003)

Minimizing non-QE mechanisms

Extracted Absolute cross-section 3-body break up

R. Cruz-Torres*, D. Nguyen* et al., Under PRL review

Compare to different theory calculation

Cracow:

- Faddeev-formulationbased
- Continuum interaction between two spectator nucleons (FSI₂₃)

<u>CK + CC1:</u>

- ³He spectral function of CDA and L.P. Kaptari and electron off-shell nucleon cross-section
- Continuum interaction between two spectator nucleons (FSI₂₃)

$$\sigma = \sigma_{ep} \cdot S(p_i, E_i)$$

M. Sargsian (FSI):

- Generalized Eikonal Approximation based
- NO continuum interaction between two spectator nucleons (FSI₂₃). Only use for high-p_{miss} comparison

³H Exp/Cracow & CK+CC1

R. Cruz-Torres, **D. Nguyen** et al. PRL editor suggestion (2020)

³He Exp/Cracow & CK+CC1

R. Cruz-Torres, **D. Nguyen** et al. PRL editor suggestion (2020)

Much better than previous data!

Iso-scalar sum ³He+³H

What we have learned in A= 3:

 \Box ³H has better agreement to calculation than ³He

Data/PWIA ~ 20% at high Pmiss

Theory describes ${}^{3}H+{}^{3}He$ data within 10% up to Pmiss = 500 MeV/c

Crucial benchmark for few-body nuclear theory and essential test of theoretical calculation

Path forward To Study heavier nuclei

Light Nuclei: The ideal lab to study NN

Why effective theories for SRCs?

Complicated NN interaction & large nuclear density

Mean-field theories don't include SRCs

□ Ab-initio calculations are limited to light nuclei

Need an effective theory that describes SRC

The Generalized Contact Formalism (GCF)

Factorization in nuclear systems

Scale separation at the short distance

Factorization of the nuclear wave function

$$\Psi \xrightarrow{r_{ij} \to 0} \phi(r_{ij}) \ge A_{ij}(R_{ij}, \{r\}_{k \neq ij})$$

Many two body wave function

Two-body Wave function

A-2 Residual system

Two-body densities in GCF $\rho_{A}^{NN,\alpha}(r,R) = C_{A}^{NN,\alpha}(R) \times |\phi_{NN}^{\alpha}(r)|^{2}$

Integrating over R and Q $\rho_{A}^{NN,\alpha}(r) = \int d\vec{R} \, \rho_{A}^{NN,\alpha}(r,R)$ $\rho_{A}^{NN,\alpha}(q) = \int d\vec{Q} \, \rho_{A}^{NN,\alpha}(q,Q)$

 $\rho_{A}^{NN,\alpha}(\mathbf{r},\mathbf{R}) = C_{A}^{NN,\alpha}(\mathbf{R}) \times |\varphi_{NN}^{\alpha}(\mathbf{r})|^{2}$ $\rho_{A}^{NN,\alpha}(\mathbf{q},\mathbf{Q}) = C_{A}^{NN,\alpha}(\mathbf{Q}) \times |\varphi_{NN}^{\alpha}(\mathbf{q})|^{2}$

Short-r Two-body densities in GCF

 $\rho_{A}^{NN,\alpha}(\mathbf{r}) = \mathbf{C}_{A}^{NN,\alpha} \times |\varphi_{NN}^{\alpha}(\mathbf{r})|^{2}$ Nuclear 2-body scaling zero-energy constants called solution of 2-body coordinate Schrödinger density Contacts equation (nucleus dependent) (universal)

Cruz Torres and Lonardoni et al., Nature Physics (2020)

High-k universality and the GCF

 $\rho_{A}^{NN,\alpha}(q) = C_{A}^{NN,\alpha} \times |\varphi_{NN}^{\alpha}(q)|^{2}$

A/D: small-r and high-k scaling are Identical

Weiss, Phys. Lett. B (2018); Cruz Torres, Phys. Lett B (2018); Weiss Phys. Lett B (2019). + many works by Claudio Ciofi; Jan Ryckebusch; Frankfurt Strikman; ...

GCF: can produce the high-k

Take-away message

□A=3 cross-section is well described by the current theory calculation up to 500 MeV/C

Understanding the complex NN interaction is a challenge and a priority of nuclear physics

□GCF allows us to study NN interaction at short distances and high momentum