

 $\cos 2\phi_t$ azimuthal asymmetry in back-to-back J/ψ -jet production in $e \ p \to e \ J/\psi \ Jet \ X$ at the EIC

Amol Pawar¹, Asmita Mukherjee¹, Mariyah Siddiquah¹, Raj Kishore² $^1 IIT Bombay, \,^2 IIT Kanpur$

Introduction

- We present the $\cos 2\phi_t$ azimuthal asymmetry in $e \ p \to e \ J/\psi \ Jet \ X$, where the J/ψ -jet pair is almost back-to-back in the transverse plane, within the framework of the generalized parton model(GPM).
- We use non-relativistic QCD(NRQCD) to calculate the J/ψ production amplitude and incorporate both color singlet(CS) and color octet(CO) contributions to the asymmetry.
- We estimate the asymmetry using different parameterizations of the gluon TMDs in the kinematics that can be accessed at the future electron-ion collider (EIC) and also investigate the impact of transverse momentum dependent (TMD) evolution on the asymmetry.

Calculation

Differential corss-section and $\cos 2\phi_t$ asymmetry

 $e^{-}(l) + p(P) \rightarrow e^{-}(l') + J/\psi(P_{\psi}) + Jet(P_{j}) + X$ In small-x $\rightarrow \gamma^{*} + g \rightarrow c\bar{c}(^{2S+1}L_{J}^{(1,8)}) + g.$ D'Alesio (2019)

virtual photon and Proton along $\pm z$ axis

Leptonic plane \Rightarrow measuring azimuthal angles

$$\begin{aligned} \frac{\mathrm{d}\sigma}{\mathrm{d}z\,\mathrm{d}y\,\mathrm{d}x_B\,\mathrm{d}^2\mathbf{q}_t\,\mathrm{d}^2\mathbf{K}_t} &= \mathrm{d}\sigma^U + \mathrm{d}\sigma^T \\ \frac{\mathrm{d}\sigma}{\mathrm{d}z\,\mathrm{d}y\,\mathrm{d}x_B\,\mathrm{d}^2\mathbf{q}_t\,\mathrm{d}^2\mathbf{K}_t} &= \frac{1}{(2\pi)^4} \frac{1}{16sz(1-z)Q^4} \Big\{ \left(\mathbb{A}_0 + \mathbb{A}_1\cos\phi_\perp + \mathbb{A}_2\cos2\phi_\perp \right) \\ f_1^g(x,\mathbf{q}_t^2) + \frac{\mathbf{q}_t^2}{M_P^2} h_1^{\perp g}(x,\mathbf{q}_t^2) \big(\mathbb{B}_0\cos2\phi_t + \mathbb{B}_1\cos(2\phi_t - \phi_\perp) + \mathbb{B}_2\cos2(\phi_t - \phi_\perp) \\ + \mathbb{B}_3\cos(2\phi_t - 3\phi_\perp) + \mathbb{B}_4\cos(2\phi_t - 4\phi_\perp) \big) \Big\} \\ \langle \cos 2\phi_t \rangle &\equiv A^{\cos 2\phi_t} = 2\frac{\int \mathrm{d}\phi_t \mathrm{d}\phi_\perp\cos2\phi_t \mathrm{d}\sigma(\phi_t,\phi_\perp)}{\int \mathrm{d}\phi_t \mathrm{d}\phi_\perp \mathrm{d}\sigma(\phi_t,\phi_\perp)} \\ \langle \cos 2\phi_t \rangle &\equiv A^{\cos 2\phi_t} = \frac{\int \mathbf{q}_t\,\mathrm{d}\mathbf{q}_t\,\frac{\mathbf{q}_t^2}{M_P^2}\,\mathbb{B}_0\,h_1^{\perp g}(x,\mathbf{q}_t^2) \\ \int \mathbf{q}_t\,\mathrm{d}\mathbf{q}_t\,\mathbb{A}_0\,f_1^g(x,\mathbf{q}_t^2) \\ &= \frac{2*|\mathbb{B}_0|}{\mathbb{A}_0} \Big|_{\frac{\mathbf{q}_t^2}{2M_P^2}|h_1^{\perp g}(x,\mathbf{q}_t^2)| = f_1^g(x,\mathbf{q}_t^2)} \end{aligned}$$

 ΓMD parameterizations

 $Q^2 = -q^2, \ s = (P+l)^2, \ x_B = \frac{Q^2}{2P \cdot q},$ $y = \frac{P \cdot q}{P \cdot l}, \ z = \frac{P \cdot P_{\psi}}{P \cdot q}.$

back to back scattering $\Rightarrow |\mathbf{q}_t|^2 \ll |\mathbf{K}_t|^2 \sim M_{\psi}^2$ \Rightarrow TMD factorization.

 ϕ_t and ϕ_{\perp}

 $\mathbf{q}_t \equiv \mathbf{P}_{\psi\perp} + \mathbf{P}_{j\perp}, \quad \mathbf{K}_t \equiv \frac{\mathbf{P}_{\psi\perp} - \mathbf{P}_{j\perp}}{2}$

small transverse momentum allows us to factorize the TMDs

Gaussian parameterization : Transverse momentum dependent part is gaussian in nature. C. Pisano, et. al. (2012)

Spectator model: It is a numerical model to describe TMDs in small-x region. P. Taels., et.al. (2020)

TMD Evolution: In TMD evolution the TMDs are solutions of Collins Soper Sterman evolution equation. D. Boer (2020)

Results and Discussion

 J/ψ production

 $d\sigma^{ab\to J/\psi} = \sum_{n} d\sigma [ab \to c\bar{c} \begin{pmatrix} 2S+1\\ L_{J}^{(1,8)} \end{pmatrix}]$ $\langle 0|\mathcal{O}^{J/\psi} \begin{pmatrix} 2S+1\\ L_{J}^{(1,8)} \end{pmatrix}|0\rangle$

 $d\sigma[ab \to c\bar{c} \begin{pmatrix} 2S+1\\ L_J^{(1,8)} \end{pmatrix}]: \text{ High energy perturbative part.} \\ \langle 0|\mathcal{O}^{J/\psi} \begin{pmatrix} 2S+1\\ L_J^{(1,8)} \end{pmatrix}|0\rangle: \text{ Non perturbative Long} \\ \text{Distance Matrix Element.} \quad c\bar{c} \begin{pmatrix} 2S+1\\ L_J^{(1,8)} \end{pmatrix} \text{ to} \\ J/\psi \end{cases}$

Bodwin, Braaten, Lepage (1994)