Gluon PDFs from Lattice QCD using twisted-mass fermions

Joseph Delmar

Department of Physics, Temple University

June 17, 2022

Outline

1 Introduction to Lattice QCD

- Motivating Lattice QCD
- Calculations on the Lattice
- Lattice in Physics

2 Calculation of gluon PDFs

- Theory and Lattice Setup
- Pseudo-PDF Approach

3 Results

Why Lattice QCD?

QCD Lagrangian: easy to write, difficult to solve

$$\mathcal{L}_{QCD} = \sum_{f} \bar{\Psi}_{f} (i \gamma^{\mu} D_{\mu} - m_{f}) \Psi_{f} - \frac{1}{4} F^{a}_{\mu\nu} F^{a\mu\nu}$$

- Can't be solved analytically because of non-linearity
- Perturbation theory fails to fully detail low- and mid-range energy behaviors
- \blacksquare Infinite degrees of freedom \rightarrow Quantum Effective Theory
- Lattice QCD is non-perturbative and starts from first-principles (no model or approximation)

Building Lattice QCD

- Start from Feynman's path integral formalism
- Wick rotate to Euclidean time

$$e^{iS_{QCD}} \Rightarrow e^{-S_{QCD}}$$

- Discretize continuum theory on a 4-dimensional lattice
- Lattice parameters regularize theory
 - UV cutoff from inverse lattice spacing (a⁻¹)
 - IR cutoff from inverse lattice size (V^{-1/4})
- Parameters of the lattice regularization same as QCD Lagrangian
 - Quark masses
 - Lattice spacing (related to coupling constant)
 - Lattice size $(L^3 \times T)$

Figure: USQCD proton on the lattice

Hadron Structure from LQCD

Fermions and gluons on the lattice

- basic units for building hadrons
- gluonic action discretized multiple ways (not unique)
- fermionic action difficult to discretize ⇒ several methods to do so (Wilson, Clover, Twisted Mass, etc)
 - each has positive and negative aspects
- Hadron states created and annihilated on lattice (source and sink)
 - excited state investigations
- Current insertion gives different observables

- Difficulties
 - All quantities must be gauge invariant
 - Fermion doubling
 - PDFs and GPDs have light-cone nature ⇒ cannot be studied directly on the lattice (Euclidean metric)
 - Computational costs (billions of degrees of freedom)
 - Many sources of uncertainty (systematic and statistical)

Lattice in Physics

Lattice and the EIC

- Lattice provides input for EIC measurements from first principle calculations
 - proton mass
 - spin decomposition
- EIC seeks to:
 - illuminate structure and interactions of gluon-dominated matter
 - probe sea quark region
 - perform parton imaging with high statistics and polarization from smallto moderate-x
- Lattice QCD today can:
 - study gluon observables
 - simulate QCD at physical values of the quark masses
 - calculate unpolarized, polarized, and transversity distributions from first principles

Introduction to Lattice QCD
Theory and Lattice Setup

Theoretical Setup

- Limited studies of gluon contributions to quantities related to hadron structure (e.g., $\langle x \rangle_g$)
- Difficult to control statistical uncertainties
- x-dependence of gluon PDFs even more challenging (only a few calculations available)

Calculation of unpolarized gluon PDF for the proton

Matrix elements of non-local operators and momentum-boosted proton states

$$\langle M^{\mu\nu}(z,P)\rangle \equiv \langle N(P)|rac{1}{2}\sum_{i}F^{ti}(z)W(z,0)F_{3i}(0)|P
angle$$

Figure: The red wavy (blue wiggling) line represents a Wilson line of length z (the field strength tensor).

This operator avoids finite mixing under renormalization

- must subtract vacuum expectation value
- unpolarized gluon PDF mixes with unpolarized singlet quark PDF in the continuum and the lattice

0000	0.00
	0.000
Introduction to Lattice QCD	Calculation of gluon PDFs

Lattice Parameters and Statistics

Ensemble of twisted-mass clover fermions and Iwasaki improved gluons

- *N*_f = 2 + 1 + 1
- *m*_π = 260 MeV
- *a* = 0.09471(39) fm
- $L^3 \times T = 32^3 \times 64$
- *L* = 3.0 fm

$$Lm_{\pi} = 4$$

Statistics

- Average over proton and neutron
- Average over all 6 spatial directions of Wilson line / momentum $(\pm x, \pm y, \pm z)$
- Statistics much higher than quark PDFs

P	t _s /a	$N_{\rm confs}$	N _{src}	N _{dir}	Total statistics	Approx. Core Hours
0	9	1,134	200	1	226,800	174,636
1	9	1,134	200	6	1,360,800	1,047,816
2	9	1,134	200	6	1,360,800	1,047,816
3	9	1,134	200	6	1,360,800	1,047,816
4	9	1,134	200	6	1,360,800	1,047,816

A Statistical Aside

- Statistical resampling is a common tool in lattice to estimate bias and uncertainty
- Jackknife method
 - create bins by omitting one (or more) observation(s)
 - take the mean of the measurements in the bins
 - take average of the bins
 - calculate jackknife error

$$\sqrt{\frac{N_{bin}}{N_{bin}-1}}\sqrt{\sum_{i}(D_{i}-\bar{D})^{2}}$$

- Statistical error scales as $1/\sqrt{N}$:
- to reduce error by 50% one needs 4 times the statistics → computational expensive

Introduction to	Lattice QCD
Pseudo-PDF /	Approach

Pseudo-PDF Approach

- Calculate correlators (2pt and 3pt functions)
- Take the ratio to calculate the matrix elements

$$\frac{C^{3pt}(t,\tau,0,\vec{P})}{C^{2pt}(t,0,\vec{P})} \stackrel{0 < <\tau < t}{=} M(\nu,z^2)$$

Form the ratio

$$\mathcal{M}(\nu, z^2) \equiv \frac{M(P, z^2)}{M(0, z^2)}$$

Evolve the ITD

$$\tilde{\mathcal{M}}(\nu, z^2, \mu^2) = \mathcal{M} + \frac{\alpha_s N_c}{2\pi} \int_0^1 du \ln(\frac{z^2 \mu^2 e^{2\gamma_E}}{4}) B(u) \mathcal{M}(u\nu, z^2)$$

Form the matched-ITD

$$\mathcal{Q}(\nu, z^2, \mu^2) = \tilde{\mathcal{M}}(\nu, z^2, \mu^2) + \frac{\alpha_s N_c}{2\pi} \int_0^1 du \ L(u) \mathcal{M}(u\nu, z^2)$$

Fourier transform to get PDF

Matrix Elements

Statistical errors increase with momentum boost

MEs have expected behavior (higher boosts go to 0 faster)

Results 000000000

Double Ratio (Reduced ITD)

Interpolation of Double Ratio

Interpolate the double-ratio at each z-step to get a continuous function for the integration

ITD Development

Calculate the reduced-ITD for each boost

ITD Development

Add first integral to get evolved-ITD

ITD Development

Add second integral to get matched-ITD

ITD Development

Average over common values on ν

ITD Development

■ Fit *Q* to get function for FT

Introduction	Lattice	QCD

Future Work

- Fourier transform pseudo-ITD to get PDF
- Perform with additional lattice parameters
 - physical pion mass
 - larger lattice
- Compare to experiment and other lattice

Figure: Khan et al. Phys. Rev. D 104, 094516

Acknowledgements

- This research is financial support by the U.S. Department of Energy, Office of Nuclear Physics, Early Career Award under Grant No. DE-SC0020405
- The calculations have been partly carried out on HPC resources supported in part by the National Science Foundation through major research instrumentation grant number 1625061 and by the US Army Research Laboratory under contract number W911NF-16-2-0189
- Computations for this work were carried out in part on facilities of the USQCD Collaboration, which are funded by the Office of Science of the U.S. Department of Energy.