# Longitudinal Spin Transfer to Λ<sup>0</sup> Hyperons in CLAS12

17/Jun./22, Matthew McEneaney, Duke University

matthew.mceneaney@duke.edu



Research supported by:



Office of Science

### The CLAS12 Experiment



V. Burkert et al., The CLAS12 Spectrometer at Jefferson Laboratory, NIM A, January 2020

#### • Central Detector

- Solenoid
- Silicon Vertex Tracker
- Central TOF Detector
- Central Neutron Detector
- Forward Detector:
  - Torus Magnet
  - Drift Chambers
  - Forward TOF Detector
  - Calorimeters (ECAL and PCAL)
  - Cherenkov Counters
- Data Set:
  - Fall 2018 RGA Run Period
  - Unpolarized LH2 Target
  - 10.6 GeV beam with 86% polarization
  - Outbending torus

#### Spin Transfer

- Previous experiments (HERMES, NOMAD) observed small light quark spin transfer to  $\Lambda$
- $\Lambda$  spin transfer is easily accessible:

$$\frac{dN}{d\Omega_{\rm p}} \propto 1 + \alpha P_b D(y) D_{LL'}^{\Lambda} \cos \theta_{pL'}$$





17 June 2022



Standard SIDIS cuts:  $Q^2 > 1 \& W > 2 \& y < 0.8 \& x_F > 0 \& z < 1$ Also require identified  $p^+\pi^-$  and scattered  $e^-$ 

Crystal Ball Fit Function:

$$CB(M; \alpha, n, \mu, \sigma) = N \cdot \exp\left(-\frac{(m-\mu)^2}{2\sigma^2}\right), \quad \frac{m-\mu}{\sigma} > -\alpha$$
$$= N \cdot A\left(B - \frac{m-\mu}{\sigma}\right)^{-n}, \quad \frac{m-\mu}{\sigma} < -\alpha$$

17 June 2022

#### MC: Comparison with Truth-Matched Signal



Counts 2000 1800 WILLAULA 1600 1400 1200 1000 MC Matched Signal MC Unmatched Sign 800 N<sub>sig</sub> = 12651 600 N<sub>ba</sub> = 15082 400 200 1.08 1.12 1.14 1.18 1.1 1.16 1.2 1.22 1.24  $M_{p^{+}\pi^{-}}$  (GeV)

MC  $\Lambda^{\circ}$  Mass

Truth Matching: Require a MC truth  $\Lambda$  in event with  $|P_{Rec}^{\Lambda} - P_{MC}^{\Lambda}| < 0.1 GeV$ 

17 June 2022

#### Graph Neural Networks (GNNs)

- Idea: use GNN to reduce background in invariant mass spectrum on event-by-event basis
- Pass each event as fully-connected, bidirectional graph
- Each particle is a node with its own data:  $p_T$ ,  $\theta$ ,  $\phi$ , etc.



5

#### Graph Neural Networks (GNNs)

• At basic level, function as generalized form of CNNs



17 June 2022

### Graph Isomorphism Network (GIN)

• Similar to Weisfeiler-Lehman (WL) Test, essentially ensures aggregation is injective



### Graph Isomorphism Network (GIN)

• Aggregation in final layer is across all previous layers/iterations



#### Implementation

- GIN: 5 layers, with 3-layer MLPs, Max pooling
- Dataset: Out-bending MC ~96k events with 50%  $\Lambda$  events, 75/25 training validation split,  $p^+\pi^-$  mass  $\in$  (1.10,1.13) GeV
- Particle features:  $\Delta \hat{p}_T, \Delta \hat{\phi}, \Delta \hat{\theta}, \beta, \chi^2$ , PID, status/1000
- Edge features:  $\Delta \hat{p}_{T_{ij}}, \Delta \hat{\phi}_{ij}, \Delta \hat{\theta}_{ij}$  (Not used yet)
- Run for ~100 epochs on Duke Compute Cluster GPUs (CUDA 11.4)



#### MC Invariant Mass

85% test accuracy and background is significantly reduced!

17 June 2022

#### Experimental Extraction (no GNNs)

- Choices for  $\Lambda$  spin quantization axis
  - Axis 1: along  $\Lambda$  momentum
  - Axis 2: along the virtual photon momentum in  $\Lambda$  rest frame
- Helicity balance method extracts on event-by-event basis:

$$D_{LL'}^{\Lambda} = \frac{1}{\alpha \overline{P_b^2}} \cdot \frac{\sum_{i=1}^{N_{\Lambda}} P_{b,i} D(y_i) \cos \theta_{pL'}^i}{\sum_{i=1}^{N_{\Lambda}} D^2(y_i) \cos^2 \theta_{pL'}^i}$$

• Linear fit method looks at the  $\cos \theta$  distributions, however this requires acceptance correction.

17 June 2022

M. McEneaney, Duke University

 $\vec{p}_p$ 

 $\vec{p}_{\Lambda}$ 

 $\vec{p}_{\pi}$ 

θ

Λ



#### Helicity Balance Results

17 June 2022

M. McEneaney, Duke University

#### Summary

• Kinematically averaged  $D_{LL'}$  results:

| $\cos \theta_{pL'}$ along $\vec{p_{\Lambda}}$ | $\cos \theta_{pL'}$ along $\vec{p_{\gamma}}$ |
|-----------------------------------------------|----------------------------------------------|
| $0.0618 \pm 0.0963$                           | $0.118 \pm 0.107$                            |

- Consistent with HERMES  $(D_{LL'} = 0.11 \pm 0.10(stat) \pm 0.03(syst))$ and NOMAD  $(-P_{\Lambda}^{\nu} = 0.09 \pm 0.06(stat) \pm 0.03(syst))$  results
- Next steps:

Improve GNN performance Transverse spin transfer measurement  $\Lambda K$  spin correlations

17 June 2022

## Thank you!



Research supported by:



Office of Science