Exploring Neutron-Proton SRC Pair Dominance with a Real Photon Beam

Phoebe Sharp

Thursday, June 16

HUGS 2022

This work was supported by the US Department of Energy Office of Science, Office of Nuclear Physics, under contract no. DE-SC0016583 and the Jefferson Science Associates Fellowship.

Two nucleons are in a Short-Range Correlated (SRC) pair when:

• 2 nucleons overlap

Two nucleons are in a Short-Range Correlated (SRC) pair when:

- 2 nucleons overlap
- Large relative momentum compared to the Fermi-momentum

Two nucleons are in a Short-Range Correlated (SRC) pair when:

- 2 nucleons overlap
- Large relative momentum compared to the Fermi-momentum
- Force between the nucleons is stronger than the interactions between the rest of the nucleus

• SRCs are found in all nuclei

- SRCs are found in all nuclei
- 10-20% of nucleons are in SRC pairs

- SRCs are found in all nuclei
- 10-20% of nucleons are in SRC pairs
- SRCs have high relative momentum (compared to Fermi momentum)

- SRCs are found in all nuclei
- 10-20% of nucleons are in SRC pairs
- SRCs have high relative momentum (compared to Fermi momentum)
- 90% of SRC pairs are neutron-proton (np) pairs
 - Np-dominance

Different SRC experiments isolate different kinematic regions.

Different SRC experiments isolate different kinematic regions.

Using different reaction mechanisms, photons provide a new perspective to SRC experiments.

SRC @ GlueX: Experimental Details

SRC @ GlueX: Experimental Details

- November December 2021
- 43 days
- Collaboration at GW, MIT, Duke, MSU, Tel Aviv, ODU, and JLab

Target	Days on Beam
Liquid Helium 4	10
Liquid Deuterium	4
Carbon Multi-Foil	14

This experiment looked at a number of reaction channels.

p reactions	n reactions
$\gamma ho o \pi^0 ho$	$\gamma n ightarrow \pi^- p$
$\gamma p o \pi^- \Delta^{++}$	$\gamma n ightarrow \pi^- \Delta^+$
$\gamma p ightarrow ho^0 p$	$\gamma n ightarrow ho^- p$
$\gamma ho o K^+ \Lambda$	$\gamma n o K^0 \Lambda$
$\gamma p o K^+ \Sigma^0$	$\gamma n o K^0 \Sigma^0$
$\gamma p ightarrow \omega p$	$\gamma n ightarrow K^+ \Sigma^-$
$\gamma p o \phi p$	$\gamma n ightarrow K^- \Sigma^+$
:	:
•	•

This experiment looked at a number of reaction channels.

Using the ρ^0 reaction channel, I want to answer these question:

 $\gamma + p \rightarrow \rho^0 + p \rightarrow \pi^+ + \pi^- + p$

Using the ρ^0 reaction channel, I want to answer these question:

 $\gamma + p \rightarrow \rho^0 + p \rightarrow \pi^+ + \pi^- + p$

1. Can np-dominance be verified with photon scattering?

Using the ρ^0 reaction channel, I want to answer these question:

$$\gamma + p \rightarrow \rho^{0} + p \rightarrow \pi^{+} + \pi^{-} + p$$

- 1. Can np-dominance be verified with photon scattering?
- 2. Can photoproduction confirm the abundances of SRC pairs?

Measuring ρ^0 in GlueX: $\gamma + p \rightarrow \rho^0 + p \rightarrow \pi^+ + \pi^- + p$

Measuring ρ^0 in GlueX: $\gamma + p \rightarrow \rho^0 + p \rightarrow \pi^+ + \pi^- + p$

The ρ^0 meson is a great channel for my analysis goals.

- High Cross Section
 - Vector Meson Dominance
 - $J_{\rho^0}^{\pi C} = 1^{--}$

N. Santiesteban. Fall 2021

The ρ^0 meson is a great channel for my analysis goals.

- High Cross Section
 - Vector Meson Dominance
 - $J_{\rho^0}^{\pi C} = 1^{--}$
- Always decays into π^+ and π^-
 - ρ^0 lifetime: ~4.5×10⁻²⁴ s

The ρ^0 meson is a great channel for my analysis goals.

- High Cross Section
 - Vector Meson Dominance
 - $J_{\rho^0}^{\pi C} = 1^{--}$
- Always decays into π^+ and π^-
 - ρ^0 lifetime: ~4.5×10⁻²⁴ s
- Identified by invariant mass
 - ho^0 mass: 0.775 GeV/ c^2

Generalized Contact Formalism (GCF) Scale separated approach to Short-Range Correlations

GCF and Electron Scattering Experiments

Schmidt, A., et.al. *Probing the core of the strong nuclear interaction*. Nature *578*(February 2020).

Pybus, J. R., et. al, (2020). Generalized contact formalism analysis of the 4 He (e, e pN) reaction. *Physics Letters B*, 805, 135429.

GCF Predictions of np-pair dominance using ρ^0 photoproduction.

GCF Predictions of pp-pair to np-pair abundances using ρ^0 photoproduction.

In summary,

- Electron scattering experiments have taught us about SRC pairs.
- Those experiments have assumptions we need to test.
- A photon beam can help us test our understanding of SRC pairs.
- Data was collected in Fall 2021.

Backup slides

GlueX: Glossy Schematic

We have used 3 kinds of electron scattering experiments to study SRCs.

R. Subedi, R. Shneor, P. Monaghan, B.D. Anderson, K. Aniol, J. Annand et al., *Probing cold dense nuclear matter*, *Science* **320** (2008) 1476.

We have used 3 kinds of electron scattering experiments to study SRCs.

- Inclusive
- Semi-inclusive
- Exclusive

R. Subedi, R. Shneor, P. Monaghan, B.D. Anderson, K. Aniol, J. Annand et al., 35 Probing cold dense nuclear matter, Science **320** (2008) 1476.

Inclusive Measurements

N. Fomin, J. Arrington, R. Asaturyan, F. Benmokhtar, W. Boeglin, P. Bosted et al., New measurements of high-momentum nucleons and short-range structures in nuclei, Phys. Rev. Lett. 108 (2012) 092502.

Semi-inclusive Measurements

Semi-inclusive Measurements

Nucleons in ¹²C

Semi-inclusive Measurements

Nucleons in ¹²C

Semi-inclusive Measurements

Exclusive Measurements

Add Duer PRL 2019 Direct observation of... citation

R. Subedi, R. Shneor, P. Monaghan, B.D. Anderson, K. Aniol, J. Annand et al., *Probing cold dense nuclear matter*, *Science* **320** (2008) 1476.

Almost everything we have learned comes from electron scattering in a narrow range of kinematics.

- FSI
 - Any distribution of momentum from the hit nuclei that messing with missing momentum
 - small wedge of anti-parallel kinematics.

• Try to see same thing with different probe, final state, kinematics, etc.

Different SRC experiments isolate different kinematic regions.

Electron Probe: Anti-Parallel Kinematics

Real Photon Probe: Parallel Kinematics

Jefferson Lab

Using the ρ^0 reaction channel, I want to answer these question:

- 1. Can np-dominance be verified with photon scattering?
- 2. Can photoproduction confirm the abundances of SRC pairs?

p reactions	n reactions
$\gamma p o \pi^0 p$	$\gamma n ightarrow \pi^- p$
$\gamma ho o \pi^- \Delta^{++}$	$\gamma n o \pi^- \Delta^+$
$\gamma p ightarrow ho^0 p$	$\gamma n ightarrow ho^- p$
$\gamma p o K^+ \Lambda$	$\gamma n o K^0 \Lambda$
$\gamma p o K^+ \Sigma^0$	$\gamma n o K^0 \Sigma^0$
$\gamma p ightarrow \omega p$	$\gamma n o K^+ \Sigma^-$
$\gamma p o \phi p$	$\gamma n ightarrow K^- \Sigma^+$
:	:
•	•

Some properties about the ρ^0 meson:

- Quantum Numbers: $J_{\rho^0}^{\pi C} = 1^{--}$
- Quark content: $\frac{1}{\sqrt{2}} [u \, \overline{u} d \, \overline{d}]$
- Mean Lifetime: ~4.5×10⁻²⁴ s
- Mass: 0.775 GeV/*c*²
- Decay: $\rho^0 \rightarrow \pi^+ + \pi^-$

Calibration

- Calibration
- Reconstruction

- Calibration
- Reconstruction
- Event Selection
 - Particle ID
 - Fiducial Volume
 - Recoil Acceptance
 - Background

S. Adhikari, C.S. Akondi, H. Al Ghoul, A. Ali, M. Amaryan, E.G. Anassontzis et al., The GLUEX beamline and detector, Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment **987** (2021) 1 [2005.14272].

- Calibration
- Reconstruction
- Event Selection
 - Particle ID
 - Fiducial Volume
 - Recoil Acceptance
 - Background
- Analysis
 - Np-pair dominance
 - Abundance of SRC pairs
 - Comparison to Theory

N. Santiesteban. Fall 2021

Generalized Contact Formalism Scale separated approach to Short-Range Correlations

GCF and Previous SRC Experiments

List of papers:

- Duer PRL 2019
- Schmidt Nature 2020
- Pybus PLB 2020
- Korover PLB 2021
- Weiss PRC 2021
- Patsyuk Nature Physics 2021
- In preparation:
 - Wright arxiv 2021
 - Korover Science 2022

GCF Predictions of np-pair dominance using ρ^0 photoproduction.

In summary,

- Electron scattering experiments have taught us about SRC pairs.
- Those experiments have assumptions we need to test.
- A photon beam can help us test our understanding of SRC pairs.
- Data was collected in Fall 2021.
- I plan to graduate in 2025.

Using different reaction mechanisms, photons provide a new perspective to SRC experiments.

• Using parallel kinematics

Using different reaction mechanisms, photons provide a new perspective to SRC experiments.

- Using parallel kinematics
- Different final states

Using different reaction mechanisms, photons provide a new perspective to SRC experiments.

- Using parallel kinematics
- Different final states
- New probe interaction

Data Chain

- Calibration
- Reconstruction
- Event Selection
 - Particle ID
 - Fiducial Volume
 - Recoil Acceptance
 - Background

Uncertainties with e⁻ probes:

GlueX detector: A real photon beam

Plans and Considerations for Analysis

- Calibration
- Fiducial volume of detector
- Particle ID
- Recoil Acceptance
- Background

What I've already done

SRC @ GlueX: Experimental Details

- November December 2021
- 45 days
- Collaboration at GW, MIT, Duke, MSU, Tel Aviv, ODU, JLab

Target	Days on Beam	Luminosity (<i>Eγ</i> > 7GeV)	Triggers (Billions)
Liquid Helium 4	10	16.1 pb ⁻¹	29.5
Liquid Deuterium	4	6.9 pb ⁻¹	16.4
Carbon Multi-Foil	14	17.1 pb ⁻¹	46.7

p reactions	n reactions
$\gamma ho o \pi^0 ho$	$\gamma n ightarrow \pi^- p$
$\gamma p ightarrow \pi^- \Delta^{++}$	$\gamma n ightarrow \pi^- \Delta^+$
$\gamma p ightarrow ho^0 p$	$\gamma n ightarrow ho^- p$
$\gamma ho o K^+ \Lambda$	$\gamma n o K^0 \Lambda$
$\gamma p o K^+ \Sigma^0$	$\gamma n o K^0 \Sigma^0$
$\gamma p ightarrow \omega p$	$\gamma n ightarrow K^+ \Sigma^-$
$\gamma p o \phi p$	$\gamma n ightarrow K^- \Sigma^+$
:	

Methods

•
$$\gamma p \rightarrow \rho^0 p \rightarrow \pi^- \pi^+ p$$

• $\gamma p \rightarrow \Delta^{++} \pi^- \rightarrow \pi^+ p \pi^-$

- Simulated 100M events with a Helium target using GCF generator
- Resampled 100K
- |t| and |u| > 2GeV
- Not run through Geant4 yet
 - No smearing or inefficiency
 - Comparing kinematics at the generator level.

π^- Kinematics

 $\Delta^{++}\pi^- \to p \; \pi^+\pi^-$

 $p\rho^0 \rightarrow p \pi^+\pi^-$

π^+ Kinematics

 $p\rho^0 \rightarrow p \pi^+\pi^-$

Proton Kinematics

Recoil Kinematics

Opening angle between π^- and π^+

Dalitz Plot

Dalitz Plot

Dalitz Plot

