			Ŭ.	Ĭ.
0000	00000	000		
Theoretical Overview	CLAS12 Run Group A Data	Sideband Method for extracting A _{LU}	Results	References

Beam spin asymmetries in the $(ep \rightarrow e'\pi^+\pi^0 X)$ channel at CLAS12

Gregory Matousek

Advisor: Anselm Vossen

HUGS 2022 - June 16. 2022

Theoretical Overview	CLAS12 Run Group A Data	Sideband Method for extracting A _{LU}	Results	References
0000				

The $ep \rightarrow e' \pi^+ \pi^0(\gamma \gamma) X$ channel

In this process, a **longitudinally polarized** electron scatters inelastically off a quark within the **unpolarized** proton target. The quark fragments into a π^+ , π^0 , and other hadronic products X. The π^0 decays into a photon pair, which together with the π^+ , form the dihadron.

Figure: Production picture for $\pi^+\pi^0$ SIDIS dihadrons[1]. Our observables will correspond to convolutions of PDFs (parton distribution functions) and DiFFs (dihadron fragmentation functions)

Theoretical Overview	CLAS12 Run Group A Data	Sideband Method for extracting A _{LU}	Results	References
0000				

Dihadron Kinematics

The differential cross section for SIDIS dihadrons is 9-fold[2]...

 $d\sigma$

$dy \, d\psi \, dP_{h\perp}^2 \, d\cos\theta \, dx \, dz_h \, dM_h \, d\phi_h \, d\phi_R$

... 3 are integrated, 4 are binned, and 2 are fit to sinusoidal modulations

Dihadron angle definitions

Theoretical Overview	CLAS12 Run Group A Data	Sideband Method for extracting A _{LU}	Results	References
0000	000000	000		

Azimuthal Modulations

Theoretical Overview	CLAS12 Run Group A Data	Sideband Method for extracting A _{LU}	Results	References
0000				

Beam Spin Asymmetries

Binning our events in ϕ_h and ϕ_R , one can write...

$$A_{LU} = \frac{1}{P} \frac{N^{+}(\phi_{h}, \phi_{R}) - N^{-}(\phi_{h}, \phi_{R})}{N^{+}(\phi_{h}, \phi_{R}) + N^{-}(\phi_{h}, \phi_{R})} = \sum_{i} A_{LU}^{\Psi_{i}} \Psi_{i}$$

We fit these to sinusoidal modulations in (ϕ_h, ϕ_R) where the fit parameters trace back to PDFs and DiFFs...

$$\sum_{i} A_{LU}^{\Psi_i} \Psi_i = A_{LU}^{\sin\phi_h} \sin\phi_h + A_{LU}^{\sin(\phi_h - \phi_R)} \sin(\phi_h - \phi_R) + \dots$$

 Theoretical Overview
 CLAS12 Run Group A Data
 Sideband Method for extracting A_{LU}
 Results
 References

 0000
 000
 000
 000
 0
 0
 0

CLAS12 Detector Apparatus

Theoretical Overview	CLAS12 Run Group A Data	Sideband Method for extracting A _{LU}	Results	References
0000	00000	000		

Cartoon of inclusive event

Theoretical Overview	CLAS12 Run Group A Data	Sideband Method for extracting A _{LU}	Results	References
	000000			

Diphoton Mass Reconstruction

Theoretical Overview	CLAS12 Run Group A Data	Sideband Method for extracting A ₁₁₁	Results	References
		•00		

Sideband Method (Motivation)

The problem with $\pi^+\pi^0$ asymmetries

The $\pi^+\pi^0 \rightarrow \pi^+\gamma\gamma$ Gaussian signal sits atop a non-negligible background. While the $\pi^+\pi^0$ kinematics has beam asymmetries $A_{LU}^{f(\phi_h,\phi_R)}$, the background can (and does) have asymmetries too.

Theoretical Overview	CLAS12 Run Group A Data	Sideband Method for extracting A _{LU}	Results	References
		000		

Removing background via sideband

Theoretical Overview	CLAS12 Run Group A Data	Sideband Method for extracting A ₁₁₁	Results	References
		000		

Signal vs. Sideband Modulations

Theoretical Overview	CLAS12 Run Group A Data	Sideband Method for extracting A _{LU}	Results	References
			•	

Preliminary A_{LU} results

 $\pi^+\pi^0$ asymmetries @ CLAS12

- Statistically significant asymmetries seen for various modulations in both M_h, x, and z binnings
- $A_{LU}^{sin(2\phi_h-2\phi_R)}$ sign change near ρ^+ mass matches result from $\pi^+\pi^-$ asymmetry studies[3]
- Future work → reduce bkg, implement alternate bkg. subtraction methods (sWeights, COWs), partial wave analysis

Theoretical Overview	CLAS12 Run Group A Data	Sideband Method for extracting A _{LU}	Results	References

List of References

- [1] C. Dilks. "Beam Spin Asymmetries of $\pi^+\pi^0$ dihadrons from SIDIS at CLAS12". In: (2021).
- S. Gliske, A. Bacchetta, and M. Radici. "Production of two hadrons in semi-inclusive deep inelastic scattering". In: *Physical Review D* 90.11 (Dec. 2014). DOI: 10.1103/physrevd.90.114027. URL: https: //doi.org/10.1103%5C%2Fphysrevd.90.114027.
- [3] T. Hayward. "Dihadron beam spin asymmetries on an unpolarized hydrogen target with CLAS12". In: (2021). URL: https://www.jlab. org/Hall-B/general/thesis/THayward_thesis.pdf.

 Theoretical Overview
 CLAS12 Run Group A Data
 Sideband Method for extracting A_{LU}
 Results
 References

 0000
 00000
 000
 000
 0
 0
 0

List of References

[4] M. Mirazita, H. Avakian, and Courtoy. "Beam Spin Asymmetry in Semi-Inclusive Electroproduction of Hadron Pairs". In: *Physical Review Letters* 126.6 (Feb. 2021). ISSN: 1079-7114. DOI: 10.1103/ physrevlett.126.062002. URL: http://dx.doi.org/10.1103/ PhysRevLett.126.062002.

Theoretical Overview	CLAS12 Run Group A Data	Sideband Method for extracting A _{LU}	Results	References
				•

Extraction example

• In principle, one performs a binned (or un-binned) fit to...

$$A_{LU} = \frac{1}{P} \frac{N^{+}(\phi_{h}, \phi_{R}) - N^{-}(\phi_{h}, \phi_{R})}{N^{+}(\phi_{h}, \phi_{R}) + N^{-}(\phi_{h}, \phi_{R})} = \sum_{i} A_{LU}^{\Psi_{i}} \Psi_{i}$$

• One finds that the sin ϕ_R fit coefficient has the following form [4]

$$A_{LU}^{\sin\phi_R} = \sqrt{2\epsilon(1-\epsilon)} \frac{F_{LU}^{\sin\phi_R}}{F_{UU,T} + \epsilon F_{UU,L}}$$
$$F_{LU}^{\sin\phi_R} \propto \left(\frac{M_p}{m_{\pi^+\pi^0}} x e^q(x) H_1^{\neq q}(z,\cos\theta, m_{\pi^+\pi^0}) + \frac{1}{z} f_1^q(x) \tilde{G}^{\neq q}(z,\cos\theta, m_{\pi^+\pi^0})\right)$$

Summary

Using BELLE and unpolarized beam+target data we extract new physics