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Relativistic Heavy-lon Collisions

Heavy Atoms like Pb/Au/Cu.
% Stripped off of their electrons ——> lons (Heavy-lon).

% Accelerated to speed of light.

% Collide them with each other to form “Little Bangs”.

% Study the aftermath by specialized detector systems around the collision.
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RHIC: STAR Experiment

% STAR: Solenoidal Tracker At RHIC.
% Heavy ion collisions of Au,Cu and d.
% Energy range from 3 GeV - 200 GeV (\/SNN).
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What is our Mission ?
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Confinement and Deconfinement of Hadrons

% Hadrons are composite objects made of
quarks and gluons. g-q interactions become
weaker as the inter-quark distance becomes
shorter (asymptotic freedom). The system
behaves like free quarks and gluons.
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arXiv:1207.7028

The deconfined state of hadronic matter is called
Quark-Gluon Plasma (QGP).

QGP a thermalised, or near to thermalised state of
quarks and gluons, where quarks and gluons are
free to move over a nuclear volume.

With QCD the only strongly interacting theory in
the Standard Model, mapping the transition region
of its phase diagram is a scientific goal of the
highest order.


https://arxiv.org/abs/1207.7028

QGP as a Thermal System

With the advent of Heavy-lon Experiments, each collision produced thousands of particles. So a
single collision can be approximated to a thermodynamic state.

In particular we can establish a well defined temperature and study its fluctuations.

Hence if the collision is to be identified as a thermal system we can experimentally determine
important state variables of the system.
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Statistical Hadronization Models

The Hadron gas can be approximated as Models give no information on how and when
non-interacting ground state hadrons and their the system reaches equilibrium.
heavier resonances.
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Model makes no predictions of dynamical
quantities.

K/
%

We can calculate a partition function involving
all known species and calculate macroscopic
quantities from it .
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A completely phenomenological description.
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Such a model can describe quantitatively the
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Hence we need Quantum Chromodynamics,

yield of most particles, including multi-strange a fundamental theory on first principles and
ones, has in fact been indicated by fits to Lattice QCD, a non-perturbative approach to
average particle abundances at AGS, SPS and QCD.

RHIC energies.



Objective

Lattice QCD calculations show that the QCD transition is
an analytical crossover at p;=0 , involves a rapid change
as opposed to a discontinuous jump . 200
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% On the other hand QCD inspired phenomenological
models predict a first order phase transition at high p;.
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«  The point where the doping of matter over antimatter
becomes large enough to instigate a first order phase 50
transition is referred to as the QCD critical point.
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»  This suggests the possible existence of a QCD critical arXiv:2108.13867
point where the first order transition terminates.
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https://arxiv.org/abs/2108.13867

What do we measure in these Experiments?

Spectra : Distribution of particle momenta.

Yield: Count of particle numbers.
(Multiplicity)

After the chemical freeze-out (T, ), the yield
is fixed.

After the kinetic freeze-out (T . ), the spectra
are fixed.
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Transverse Momentum p_ is defined as
V(p,2+p2).

Fluctuations in temperature are
obtained from the fluctuations in
transverse momentum.

Temperature is found by applying fits
to the spectra under different
formalisms.

Statistics

Transverse Momentum Distribution

T| Mean 0.3014
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Std Dev  0.2456
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® 876 GeV n

“c 2= 1/3 arXiv:nucl-ex/0504004
120} —c2=1/5

Multiplicity: Particle yields.

« Fluctuations can be studied for

identified particles or charged particles. =0

>
T 80}
% Multiplicity fluctuations are associated = oo |-
to conserved charges :
> Electric Charge SEF
> Baryon Number 20 |

> Strangeness

Rapidity (Y)

< Yield distributions
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https://arxiv.org/abs/nucl-ex/0504004
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Fluctuations quantify proximity to critical
point.

Yield fluctuations ——p Conserved
quantum numbers.

Spectra fluctuations — Temperature

Ratios of cumulants, thermodynamic
functions are calculated to quantify these
fluctuations.
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https://arxiv.org/abs/1601.05631

Why Specific Heat C,, ?

% For a system undergoing phase transition, C_ |  ®*[ Lattice Sizes
is expected to diverge at the critical point. i +96x96
Q1S “128x 128
. 256 x 256
%  Thus the variation of thermal fluctuations with [0~ 011 ALY
temperature can be effectively used to probe - 4 o
the critical point. 0.05 |- et , T,
v by e by e by ey by e by e by by g

% In the 2D Ising Model we can see the T-T,
divergence of C as we change the
temperature of the system.

< Simulations from 2D Ising Model for C,.
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Why Specific Heat C,, ?

Specific heat is a thermodynamic quantity Temperature fluctuation of the system provides an
characterizing the equation of state of the system. estimation of C .

* C,= B—Er2 Definition from <  Thus, with the measurement of T on an
Thermd®ndmics event-by-event basis, it is possible to extract the
C, of the hot and dense strongly interacting matter

%  Heat Capacity, C of a system in thermal produced in heavy-ion collisions.

equilibrium connected to a bath at T can be
computed from the event- by-event fluctuations of
temperature: % Assuming complete thermal equilibrium up to the
surface of last scattering which is the kinetic
i <Tk2in >— <Tk’i’n >2 freeze-out surface, CV is then expected to reveal
cC <Thin >2 the thermodynamic state of the matter at the
moment of kinetic freeze-out.

arXiv:1601.05631
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Progress so far
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STAR has calculated C  at energies 19.6, 62.4, 130

and 200 GeV.

The experimental values match the prediction from

the HRG Model. N
o2

Monotonic increase coming into effect and the "v

analysis at 3 GeV is critical to understand this trend. &

PACIAE (Event Generator).

HM : Hadronic Matter.

QGM : Quark-Gluonic Matter.
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https://arxiv.org/abs/1601.05631
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Questions???
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Why Isothermal Compressibility k- ?

K, describes the relative variation of the volume of a
system due to a change in the pressure at constant T—= T \3 ‘T <N>
temperature.

Under the Grand-Canonical Ensemble

K; is linked to density fluctuations and can be expressed’" Formalism (G.C.E), we have:

in terms of the second derivative of the free energy with
respect to the pressure.

7
°

& kpT<N>2

v g2 = BN kg

& _ <NZ>—<Ng>?
Weh = <N >

7
°

In a second order phase transition k. is expected to
show a singularity.
% Weh Is the scaled variance of the Charged

particle yields.
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Progress so far

7/
%

Calculations carried out at 7.7, 11.5, 19.6,
62.4 and 200 GeV.

A higher value of K at low energies compared
to higher energies indicates that the collision
system is more compressible at the lower
energies.

AMPT, UrQMD and EPOS (Event
Generators).
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Isothermal Compressibility Vs \/SNN
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Calculating T, ._

0,
%

Blast-\Wave formalism:

The measured p, spectral shape flattens
significantly with increasing particle mass in central
Au+Au collisions. This suggests the presence of a
collective transverse radial flow field (cylindrical
symmetry).

This p; distribution is found from the Cooper-Frye
equation:

EdgN ff(ac p)ptdo,

from the Blast Wave

— —»} T R?
— \ ) —

dz =Y70dy

EpEN _ 1 _d'N
dp? 2mpr dprdy

(Particle Spectra)

f(x,p) is the distribution function of the phase
space.

p“ is the momentum 4-vector

daﬂ is the hypersurface from which the

particles are emitted. 25



Kinetic Freeze-out
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<  Combined Blast-Wave Fit
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Collision Energy (Vs )

Vs is the total energy in the Center of Mass Frame % Energy of the collision expressed in terms of

(CM), invariant mass of the CM. nucleon- nucleon center of mass energy.

R/
L X4

« Natural units, h=c=1. In the nucleon-nucleon CM frame, two nuclei
% 1eV =1.60218x1079 J. approach each other with the same velocity.
%  The Collision Energy enables us to reach the desired <  The nucleon-nucleon CM energy is denoted by

energy density and temperatures for the system. \/SNN and is related to the total CM energy by:

5= By =m} +md + 2AE1Bs + o[ ) NE

VNN = 4

< A: Number of Nucleons in the Heavy-lon
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Backup Slides

X Test for Fitting:

o =Yy, o)

a;

% v : Number of degrees of freedom (N-r)

% x°v =1 (For a good fit).
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