
EQUATION OF STATE FOR NEUTRON 

STAR MATTER INCLUDING HYPERONS

〇KAITO NOROA, WOLFGANG BENTZA, IAN C. CLOËTB, TERUYUKI KITABAYASHIA

GRADUATE SCHOOL OF SCIENCE AND TECHNOLOGY, TOKAI UNIVERSITYA, 

PHYSICS DIVISION, ARGONNE NATIONAL LABORATORYB

1

Jun.16, 2022.

HUGS2022. Student Seminar. Jefferson Lab.



MOTIVATION

 Hyperons may exist near center of the neutron stars.

 It is known that predicted mass of the star from equation of 

state including hyperons is not consistent with the 

observations (Hyperon Puzzle).

 Construct the equation of state with Flavor SU(3) Nambu-

Jona-Lasinio model to seek the way to solve the problem on 

the quark level.  
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OUTLINE

 Introduction of Neutron Stars

 Our model

 Numerical Results

 Summary
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WHAT ARE NEUTRON STARS?

 One of the high-density 

compact stars in universe!

 Forms after supernova 

explosion of a massive star, 

only when it has specific mass.

Heavier: Black Hole

4(https://chandra.harvard.edu/photo/2009/cra

b/more.html)



WHAT ARE NEUTRON STARS?

 Structure

Outer Core: Neutron, Proton, Electron

Inner Core: Quarks?, Hyperon?, Pion?, 
etc… 

 Properties

Maximum Mass: about 2.1 M⨀

M⨀: solar mass = sun’s mass

Radius: about 10km

105 times smaller than sun
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(https://en.wikipedia.org/wiki/Neutron_star)

Hyperon?

Deconfined quarks?



OUR MODEL (EQUATION OF STATE)

Mean field approximation: 

→ Based on mean field description of 

baryons interacting via quark-quark 

interaction.

Model for quark-quark interaction:

→ Nambu-Jona-Lasinio (NJL) model
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Baryon

Quark



WHAT ARE HYPERONS?

 Baryons with strange quark .

 In our study, we included 8 

different baryons.

p, n, Σ+, Σ0, Σ−, Λ, Ξ0, Ξ−
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(http://kakudan.rcnp.osaka-

u.ac.jp/jp/overview/world/Flavor.html)

hyperons



OUR MODEL (EQUATION OF STATE)

Flavor SU(3) NJL Model Lagrangian:
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∙∙∙ Lorentz scalar ത𝑞𝑞 channel (2nd term)

⋯ Lorentz vector ത𝑞𝑞 channel

⋯ Scalar diquark channel

⋯ Axial-vector diquark channel

Gπ Gω GS GA

19.04 6.030 5.839 4.907

Table. 1 Values of coupling constants [GeV−2] 



OUR MODEL (EQUATION OF STATE)

Determining the Four Coupling Constants :

➢ 𝐺𝜋: Solving the gap and Bethe-Salpeter equations, reproducing pion decay 
constant fπ = 93[MeV] and the pion mass mπ = 140[MeV].

➢ 𝐺𝜔: Binding energy per-nucleon in symmetric nuclear matter ΤEB A =
16[MeV] with the saturation density of ρB0 = 0.15[fm−3].

➢ 𝐺𝑆, 𝐺𝐴: From the T matrix of the Faddeev equation to reproduce the masses 
in vacuum of the nucleons as 940 MeV and the Δ particle as 1232 MeV.
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OUR MODEL (EQUATION OF STATE)

Masses of the Baryons:

Determined by the Faddeev equations. 
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p n 𝚺+ 𝚺𝟎 𝚺+ 𝚲 𝚵𝟎 𝚵−

Calc. 940.0 940.0 1168.5 1168.5 1168.5 1124.6 1318.7 1318.7

Obs. 938.3 939.6 1189.4 1192.6 1197.7 1115.7 1314.9 1321.7

Table 2. Mass of the baryons [MeV]



OUR MODEL (EQUATION OF STATE)

Equation of State for Neutron Star Matter (T=0):

൞
ℰ = 𝑉 + ෍

𝛼=𝑎,𝑖

𝜇𝛼𝜌𝛼

𝑃 = −𝑉

where

➢ ℰ: Energy density

➢ V: Effective potential

➢ P: Pressure
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➢ 𝛼: Baryons and leptons(e, 𝜇)

➢ 𝜇𝛼: Chemical potentials

➢ 𝜌𝛼: Density for each particle



OUR MODEL (EQUATION OF STATE)

Effective Potential (in mean field approximation) V:

𝑉 = 𝑉𝑣𝑎𝑐 + 𝑉𝐵 + 𝑉𝑙 −
𝜔2 + 𝜌2

4𝐺𝜔
−

𝜙2

8𝐺𝜔

where

➢ 𝑉𝑣𝑎𝑐: Vacuum term of constituent quarks (u, d, s)

➢ 𝑉𝐵: Baryon kinetic term (Baryons moving in mean scalar and vector fields)

➢ 𝑉𝑙: Lepton kinetic terms

➢ 𝜔, 𝜌, 𝜙: Mean vector fields
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OUR MODEL (EQUATION OF STATE)
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OUR MODEL (EQUATION OF STATE)

 Consider for example the vector couplings

ℒ𝐼,𝑣 = −𝐺𝜔 ෍

𝑎=0,3,8

ഥΨ𝜆𝑎𝛾
𝜇Ψ 2

= −𝐺𝜔[ ത𝜓𝛾𝜇𝜓 2 + ത𝜓𝜏3𝛾
𝜇𝜓 2 + 2 ҧ𝑠𝛾𝜇𝑠 2]

This is equivalent to the Yukawa Couplings,

ℒ𝐼,𝑣 = − ത𝜓𝛾𝜇 𝜔𝜇 + 𝜏3𝜌𝜇 𝜓 − ҧ𝑠𝛾𝜇𝜙𝜇𝑠

+
𝜔𝜇
2 + 𝜌𝜇

2

4𝐺𝜔
+

𝜙𝜇
2

8𝐺𝜔

where

𝜔𝜇 = 2𝐺𝜔 ത𝜓𝛾𝜇𝜓 , 𝜌𝜇 = 2𝐺𝜔 ത𝜓𝜏3𝛾𝜇𝜓 ,𝜙𝜇 = 4𝐺𝜔 ҧ𝑠𝛾𝜇𝑠
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OUR MODEL (EQUATION OF STATE)

Two Conditions for Neutron Stars:
(1) Chemical Equilibrium

𝜇Σ+ = 𝜇𝑝 = 𝜇𝑛 − 𝜇𝑒

𝜇Σ0 = 𝜇Λ = 𝜇Ξ0 = 𝜇𝑛

𝜇Σ− = 𝜇Ξ− = 𝜇𝑛 + 𝜇𝑒

𝜇𝑒 = 𝜇𝜇

(2)   Charge Neutrality

𝜌𝑄 =෍

𝛼

𝑄𝛼𝜌𝛼 − 𝜌𝑒 − 𝜌𝜇 = 0
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OUR MODEL (STAR STRUCTURE)

Tolmann-Oppenheimer-Volkoff (TOV) equation:

→ Based on Einstein’s general theory of relativity, constrains the 
structure of a spherically symmetric body which is in static 
gravitational equilibrium.

𝑑𝑃

𝑑𝑟
= −

𝐺 𝜌 +
𝑃
𝑐2

4𝜋𝑟3
𝑃
𝑐2

+𝑀

𝑟2 1 −
2𝐺𝑀
𝑐2𝑟

𝑑𝑀

𝑑𝑟
= 4𝜋𝑟2𝜌
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RESULTS: (1) EQUATION OF STATE

In high density region, pressure and 

energy density with hyperon 

decreases.
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Fig 1. Relation between energy and pressure.



RESULTS (1) : EQUATION OF STATE
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RESULTS (1) : EQUATION OF STATE
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RESULTS: (2) STAR MASS AND RADII
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Star mass with hyperons is too 

low compared to the 

observation of heavy star (PSR).

→ “Hyperon Puzzle”

Fig 2. Relation between star mass and radii.



SUMMARY

Hyperons may exist near center of the neutron star.

Equation of State with hyperons is not consistent with the 

observations.

We are now seeking the way  to solve the Hyperon Puzzle on 

the quark level.
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OUR MODEL (EQUATION OF STATE)

 Chemical Potentials for each baryons

𝜇𝑝 = 𝜇𝑝
∗ + 3𝜔 + 𝜌, 𝜇𝑛 = 𝜇𝑛

∗ + 3𝜔 − 𝜌

𝜇Σ+ = 𝜇Σ+
∗ + 2𝜔 + 2𝜌 + 𝜙, 𝜇Σ0 = 𝜇Σ0

∗ + 2𝜔 + 𝜙, 𝜇Σ− = 𝜇Σ−
∗ + 2𝜔 − 2𝜌 + 𝜙

𝜇Λ = 𝜇Λ
∗ + 2𝜔 + 𝜙

𝜇Ξ0 = 𝜇Ξ0
∗ + 𝜔 + 𝜌 + 2𝜙, 𝜇Ξ− = 𝜇Ξ−

∗ +𝜔 − 𝜌 + 2𝜙

where 𝜇𝛼
∗ = 𝑘𝛼

2 +𝑀𝛼
2
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OUR MODEL (YUKAWA COUPLINGS)

 Yukawa Couplings

𝐺(ത𝑞Γ𝑞)2= ത𝑞Γ𝑞 𝜑 −
𝜑2

4𝐺

define the auxiliary fields

𝜑 = 2G ത𝑞Γ𝑞
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OUR MODEL (YUKAWA COUPLINGS)

 Consider for example the scalar couplings

ℒ𝑆 = 𝐺𝜋 ෍

𝑎=0,3,8

(ഥΨ𝜆𝑎 Ψ)
2

= 𝐺𝜋[ ത𝜓𝜓 2 + ത𝜓𝜏3 𝜓
2
+ 2( ҧ𝑠𝑠)2]

This is also equivalent to Yukawa Couplings

ℒ𝑆 = ത𝜓 𝜎 + 𝜏3𝛿 𝜓 + ҧ𝑠𝜎𝑠𝑠 −
𝜎2 + 𝛿2

4𝐺𝜋
−

𝜎𝑠
2

8𝐺𝜋

where

𝜎 = 2𝐺𝜋 ത𝜓𝜓 , 𝛿 = 2𝐺𝜋 ത𝜓𝜏3𝜓 , 𝜎𝑠 = 4𝐺𝜋 ҧ𝑠𝑠
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WEAK PROCESSES (EXAMPLE 1)

 The decays 

𝜇− → 𝑒− ҧ𝜐𝑒𝜐𝜇

𝑛 → 𝑝𝑒− ҧ𝜐𝑒

and the reverse processes, give the relations

𝜇𝜇 = 𝜇𝑒

𝜇𝑛 = 𝜇𝑝 + 𝜇𝑒
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WEAK PROCESSES (EXAMPLE 2)

 The Λ has decays via 2 modes

Λ → 𝑝𝜋− → 𝑝𝜇− ҧ𝜈𝜇

Λ → 𝑛𝜋0 → 𝑛𝛾𝛾

This, and the reverse processes, gives the relation

𝜇Λ = 𝜇𝑛
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