Gas Electron Multiplier Detectors used in the SBS GMn Experiment

Sean Jeffas

University of Virginia

HUGS June 16, 2022

University of Virginia

Electron-Nucleon Scattering

- Electron-nucleon scattering can be used to investigate the nucleon structure.
- $F_1(Q^2)$ and $F_2(Q^2)$ are Pauli and Dirac form factors.
- G_{F} and G_{M} , more commonly used, describe the electric and magnetic distributions.

$$G_E=F_1-\kappa au F_2$$
 $G_M=F_1+\kappa F_2$ $au=rac{Q^2}{4M^2}$

Neutron Electromagnetic Form Factor Ratio

- Previous experiments measured the proton ratio G_E^p/G_M^p up to Q² = 8 GeV² and the neutron ratio G_E^n/G_M^n up to Q² = 3.5 GeV².
- They found that G_E^p/G_M^p sharply declined after Q² ~ 1 GeV².
- It is suspected that G_E^n/G_M^n will exhibit the same behavior at higher Q².

Super BigBite Spectrometer (SBS) Program

- Precision Measurement of the Neutron Magnetic Form Factor up to Q² = 18.0 (GeV/c)² by the Ratio Method (GMn).
- Measurement of the Neutron Electromagnetic Form Factor Ratio G_E^n/G_M^n at High Q² (GEn-II).
- Measurement of the Ratio G_E^n/G_M^n by the Double-polarized ${}^2\mathrm{H}(\vec{e},e'\vec{n})$ Reaction (GEn-RP).
- Large Acceptance Proton Form Factor Ratio Measurements at 13 and 15 (GeV/c)² Using Recoil Polarization Method (GEp-V).

GMn "Ratio Method" Calculation

- Collide electron beam onto a deuterium target.
- Simultaneously measure the proton and neutron cross section.
- Many systematic errors cancel in the ratio.

SBS GMn Experiment

- GMn ran from October 2021 to February 2022.
- Measurements completed at $Q^2 = 3.0, 4.5, 7.5, 10, and 13.6 \text{ GeV}^2$.

6/15 University of Virginia

Gas Electron Multiplier (GEM) Detectors

- The detector consists of three thin foils with micrometer size holes.
- Strong electric fields are created in a very small region.
- Incoming charged particles ionize the gas and shower through large electric fields.
- Resulting shower deposits charge onto copper readout strips.
- Electronics read out the position of the strips hit.

U-V GEM Readout

- UVa group has produced 50 X-Y and 4 U-V GEMs for the SBS experiments.
- National Institute for Nuclear Physics (INFN) in Italy has produced 12 X-Y GEMs.
- Technological improvements have made U-V orientation GEMs possible.
- U-V GEMs can be larger \Rightarrow Reduce size of dead areas.
- U-V GEMs provide extra coordinate information ⇒ Improved tracking results.

<u>UVa U-V</u>

400 mm

U-V Readout Strips

SBS GEM Types

<u>UVa X-Y</u>

<u>UVa U-V</u>

GEM Commissioning at JLab

- Layers stacked together on a large cosmic stand.
- Multiple layers with hits can be used to form tracks.
- Tracks are projected through all layers to look for real hits.

June 16, 2022

10/15 University of Virginia

SBS GMn/GEn Spectrometers

Super BigBite Spectrometer (Neutron/Proton Arm)

GEM Commissioning with Beam

- Under low beam current we varied the GEM voltage and measured the resulting efficiency curve.
- Set operating voltages to the onset of the efficiency plateau.
- This process was completed for all GEM modules.
- Overall 85+% efficiency, except for some worse areas.

High Rate Tracking

- Large number of possible of 2D hit combinations.
- "Fake hits" from noise would artificially reduce the tracking efficiency.
- Signal on top of a large background could be lost, reducing the efficiency.

Tracking Procedure

- Form all 2D hit combinations from strips.
- Filter hits using a variety of thresholds
 - Cluster ADC
 - Correlation coefficients
 - ADC asymmetry
 - Timing cuts
- Form all possible tracks through hits on layers
 - Cut on calorimeter region
 - Cut on projection back to target

GEM Overall Performance

- Due to high rates the back tracker performed consistently better than the front layers.
 - After analysis improvements, real efficiencies will likely be at least 5% better.
- Good position resolutions of 70 µm

GEM Efficiency throughout GMn

Summary

- GMn was completed in February 2022.
- Learned a lot about GEM performances and solutions for future experiments.
 - Many fixes currently being implemented.
- GEn-II will run in the September of 2022.
- FF measurement will provides tests for various hadronic structure models.

References

- [1] SBS Collaboration Meeting, Feb 17 18 2021: https://indico.jlab.org/event/430/contributions/7832/attachments/6493/8711/mkjones_sbs_ecal_feb_2021.pdf
- [2] B. Wojtsekhowski, T. Averett, G. Cates, S. Riordan (spokespersons), Jefferson Lab experiment E12-09-016 -GEn(2): <u>https://misportal.jlab.org/mis/physics/experiments/viewProposal.cfm?paperId=617</u>
- B. Sawatzky, V. Bellini, K. Gnanvo, D. Hamilton, M. Kohl, N. Piskunov, B. Wojtsekhowski (spokespersons), Jefferson Lab experiment E2-17-004 (GEn-RP): <u>https://misportal.jlab.org/mis/physics/experiments/viewProposal.cfm?paperId=919</u>
- [4] Gordon Cates, GEn 2020 Experimental Readiness Review: https://hallaweb.jlab.org/wiki/images/0/0f/Cates_err_oct_2020_v4-compressed.pdf
- [5] S. Gadomski, G. Hall, T. Høgh, P. Jalocha, E.Nygårdd, P.Weilhammer, *The deconvolution method of fast pulse shaping at hadron colliders*, Nucl. Instr. Meth. Phys. Res A, 320 (1992)
- [6] G.D. Cates, C.W. de Jager, S. Riordan, B. Wojtsekhowski, Phys. Rev. Lett. **106** 252003 (2011)