

Unbinned Maximum Likelihood Fit for $\eta \rightarrow \pi^+ \pi^- \pi^0$ Dalitz Plot Analysis at GlueX

Nizar Septian HUGS 2022

$$\eta \to \pi^+ \pi^- \pi^0$$

	η	$\pi^+\pi^-\pi^0$
Ι	0	1
G	+1	-1
С	+1	+1

- ✓ G violating.
- ✓ Isospin breaking.
- ✓ Induced dominantly by the strong interaction via the *u*, *d* mass
 - difference.

An ideal laboratory for testing Chiral Perturbation Theory. The decay amplitude [1]: $A(s,t,u) = \frac{1}{O^2} \frac{m_K^2}{m_\pi^2} (m_\pi^2 - m_K^2) \frac{M(s,t,u)}{3\sqrt{3}F_\pi^2}, Q^2 \equiv \frac{m_s^2}{m_\pi^2} \left(1 - \frac{m_u^2}{m_\pi^2}\right)^{-1}$ $|A|^2 \propto \Gamma(\eta \to 3\pi) \propto Q^{-4}$ Experimental access to: \blacktriangleright Decay width, Γ . ▶ Quarks mass ratio, Q^2 .

Dalitz plot analysis

A three body decays can be uniquely described by two dimensionless variables, say X and Y.

Expand
$$|A(X,Y)|^2$$
 around $X, Y = 0$:

$$|A(X,Y)|^{2} \propto (1 + aY + bY^{2} + cX + dX^{2} + eXY + fY^{3} + gX^{2}Y + hXY^{2} + lX^{3} + \cdots)$$

Dimensionless variables:

$$X \equiv \frac{\sqrt{3}(T_{\pi^+} - T_{\pi^-})}{\Sigma^T}$$
 and $Y \equiv \frac{3T_{\pi^0}}{\Sigma^T - 1}$, T_s are pion's energies.

X is sensitive to charge conjugation: c = e = h = l = 0

FLORIDA STATE UNIVERSITY

Previous experiments

Experiment	$N(\eta ightarrow \pi^+ \pi^- \pi^0)$
KLOE	~4.7 M
WASA	~120 K

Comparing WASA and KLOE Dalitz Parameters

- Tensions on *a* and *b* parameters between WASA[2] and KLOE[3].
- JPAC used KLOE and WASA results to determine: $Q = 21.6 \pm 1.1$. [4]

6/15/2022

GlueX@Jefferson Lab

Experimental Hall-D:

- ✓ Fixed-target photoproduction experiment with 40% linearly polarized photon beam at 9-GeV.
- ✓ Relative photon and charged-particles reconstruction efficiency > 90%.
- ✓ ~4 π coverage.

Built to search for and map out the spectrum of exotic hybrid mesons using a linearly-polarized photon beam incident on a proton target.

Nizar Septian - HUGS 2022

Event selections

We selected $\sim 10^6 \eta$ signal from GlueX-I by utilizing a kinematic fitter to suppress background and improve resolution of *X* and *Y*.

Unbinned, maximum likelihood fits

• Minimize the following function:

$$-2\ln\mathcal{L} \equiv -2\left(\sum_{i=1}^{N}\ln\mathcal{I}(\mathbf{x}_{i};\boldsymbol{\theta}) - \int\mathcal{I}(\mathbf{x}_{i}\epsilon(x)d\mathbf{x})\right) + c_{1}$$

where θ are fit parameters and c_1 is a constant that does not depend on θ .

- The intensity $\mathcal{I}(\mathbf{x}_i; \boldsymbol{\theta})$ for this analysis is defined as: $\mathcal{I}(X_i, Y_i, a, b, c, d, e, f, g, h, l)$ $= (1 + aY_i + bY_i^2 + cX_i + dX_i^2 + eX_iY_i + fY_i^3 + gX_i^2Y_i + hX_iY_i^2 + lX_i^3)$
- The efficiency ϵ is calculated from Monte Carlo simulation.
- The $-2 \ln \mathcal{L}$ function minimization is handled by **AmpTools** libraries[7].

Statistical uncertainty study

- In order to accurately determine statistical uncertainties of each Dalitz parameter, we complement AmpTools fitter with Bootstrapping technique.
- **Bootstrapping** → resampling the data samples by randomly drawing events from the datasets while keeping the original number of events, some of the events are repeated, some are omitted.
- The work presented here analyzed uniquely randomized 1000 resampled datasets.

FLORIDA STATE UNIVERSITY

Summary and Outlook

- Reconstructed ~ $10^6 \eta$ events from GlueX-I.
- Successful implementation of unbinned Likehood fitter for $\eta \rightarrow \pi^+ \pi^- \pi^0$ Dalitz analysis.
- No C-violating contribution observed.
- This results are consistent with binned Dalitz analysis (not shown today).
- Determination of systematic uncertainty.
- Comparison to previous measurement and publication.

References

- 1) Bijnens, J., & Gasser, J. (2002). Eta Decays at and Beyond p4 in Chiral Perturbation Theory. *Physica Scripta*, *T99*(1), 34. <u>https://doi.org/10.1238/Physica.Topical.099a00034</u>
- 2) WASA-at-COSY Collaboration. (2014). Measurement of the $\eta \rightarrow \pi + \pi \pi 0$ Dalitz plot distribution. *Physical Review C Nuclear Physics*, *90*(4). <u>https://doi.org/10.1103/PhysRevC.90.045207</u>
- 3) The KLOE-2 collaboration. (2016). Precision measurement of the $\eta \rightarrow \pi + \pi \pi 0$ Dalitz plot distribution with the KLOE detector. *Journal of High Energy Physics*, 2016(5). <u>https://doi.org/10.1007/JHEP05(2016)019</u>
- 4) P. Guo et al. (2017). Three-body final state interaction in $\eta \rightarrow 3\pi$ updated. *Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics*, 771, 497–502. <u>https://doi.org/10.1016/j.physletb.2017.05.092</u>
- 5) GlueX Collaboration (2021). The GlueX beamline and detector. *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 987, 164807.* <u>https://doi.org/10.1016/j.nima.2020.164807</u>
- 6) S. Agostinelli et al. (2003). Geant4—a simulation toolkit. *Nuclear Instruments and Methods in Physics Research* Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3), 250–303. <u>https://doi.org/https://doi.org/10.1016/S0168-9002(03)01368-8</u>
- 7) M. Shepherd et al. (2022). mashephe/AmpTools: Version 0.14.4. https://doi.org/10.5281/ZENODO.6564622

FLORIDA STATE UNIVERSITY

Thank you!