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Semi-inclusive deep inelastic scattering

e

SIDIS: virtual photon exchanged with parton, measure
scattered lepton and single/di-hadrons

 SIDIS cross-section gives access to parton distribution functions

and fragmentation functions
S. Diehl, PRL

* Extra degree of freedom from hadron vital for studying TMD-
PDFs

Also measure TMD-FFs giving information on flavor of struck
quark

Azimuthal angle and transverse momentum defined around
virtual photon axis in target COM frame
Cross-section a function of (Q?, x, v, pr, Z, M)
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ATHENA detector
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SIDIS kinematic reconstruction

 SIDIS variables: reliant on reconstruction of virtual photon four-momentum, typically determined using
g=1-10

e Reliable for larger y (“inelasticity”), but begins to fail for y <~0.05

Low-y: region of interest for TMDs, valence quarks, evolution studies, o 10’
overlap with Jlab coverage

ATHENA full simulation:

pT mean relative error, ele. method

e To utilize full EIC kinematic reach for SIDIS studies, need
improved methods to determine SIDIS variables
e CC-would require first method without electron

Phys.Rev. D70 (2004) 117504
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Reconstruction with hadronic final state

Through conservation of momentum and energy, hadronic final state (HFS) should also contain
enough information to constrain virtual photon four-momentum

Method used in EIC YR and detector proposals to reconstruct virtual photon using hadronic final
state (HFS)

e xandy components - summed HFS momentum
e zand t components - solved for algebraically using
_ P4

p.l

and DIS variables from any DIS reconstruction method

Y

i) Leptonic variables q=q =k — ki, yi=p1.(k1 — k2)/p1.ks
it) Hadronic variables [81] q=q,=p2— D1, Y =np1-(p2—p1)/p1-Ks
ui) Jacquet-Blondel variables [82) Q355 = (P2.1)*/(1 —ysB), yss = X/(2E(k,))

Y= (Eh—Drz) Prog. Part. Nucl. Phys. 2013, Blimlein
Mized variables [81] q=q, Ym = YJB

B o 4E (ko)? cos®(0(ks) /2)
DA™ sin?(0(ky)/2) + sin_(ﬁ(k2)/2/ cos(0(k2)/2) tan(0(p2)/2)’
sin(0(kz)/2)

Ypa =1 = Sn08;)72) T cos(0(k,)/2) tan(8(03)/2)’

Double angle method [83]




RGSO'UUOHS Pr (OJ% ATHENA full simulation,

pT mean relative error, ele. method ([)H mean error, ele. method 10X275, p I +, z> O . 2

Electron method

pT mean relative error, DA method ¢H mean error, DA method

DA method
(Electron and HFS)

pT mean relative error, JB method

Angular resolution still
poor at low-y with all
methods

T rrrrm

JB method
(Only HFS)
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Machine learning reconstruction

Particle flow networks (PFN) developed by

_ _ _ Komiske et al., (JHEP 01 (2019) 121, Komiske,
* Based on hybrid HFS-electron SIDIS reconstruction, using ML to Metodiev, Thaler):

combine information from both to reconstruct g
Particles Observable

* ML models used for DIS reconstruction have been shown to be
able to naturally account for radiative effects

* (arXiv:2108.11638 Diefenthaler, Farhat, Verbytskyi, Xu, and NIM-A
1025 (2022) 166164, Arratia, Britzger, Long, Nachman) /4

e Currently utilizing %raph—like neural network architectures
|

Per—Particle Representation Event Representation

O

designed for tasks like jet classification

e Particle flow networks:
e Accepts unordered set of particles

* Particle features -> input to layers ®©
* Summed over to created latent space of £ variables /

* Global features of event concatenated with latent space
variables

Energy/Particle Flow Network

* Latent space variables and global features fed to layers F,
produce final output
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ML SIDIS model and training

 Model combining electron and HFS:
e Particle features for PFN: momentum, energy, n, ¢ in lab frame
* Event-wide features: electron four momentum, DIS variables from JB, DA, electron methods

e DIS variables will eventually be replaced with final reconstructed Q2 and x likely using another ML
method, but in this study statistics for training were limited

e Target: MC virtual photon four-momentum in lab frame

* Training sample: ATHENA full simulation
* Version of dd4hep ATHENA full sim. used for detector proposal
 Still some features missing, e.g. proper scattered electron ID
e HFS at the level of reconstructed particles
* 10 GeV electron beam, 275 GeV proton beam, crossing angle -25 mrad
* Trained on 3 million events with Q2 > 1 GeV?, 2 million with Q% > 10 GeV?

* 1 million Q2 > 1 GeV? events for validation
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ATHENA full simulation, PT — PT.true

10x275, pi+, z>0.2 PT,true

pT mean relative error, ele. method ¢, mean error, ele. method

¢H 5 ¢H,true

Electron
method

PFN able to
correct electron

pT mean relative error, NN ¢H mean error, NN method in almost
all of x-Q2

Neural
network

T T llllll'l
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ATHENA full simulation,
10x275, pi+, z> 0.2

e Comparison with other
HFS/hybrid methods vs

ytrue

e NN clearly best
performance for low y,
and at least equaling
electron method for
large y

RMS:

mean, |§u — dutrue|

‘¢h = Qbh,true’

mean, |§n — On, truel

|pT . pT,true|

PT,true
mean, pr absolute relative error

* Neural network
* ele. method
DA method
JB method

mean, pr absolute relative error

* Neural network

* ele. method
DA method

« |B method
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ms, |@n — Pn, truel
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107!
Yrue
ms, pr absolute relative error

* Neural network
+ ele. method
DA method
JB method

rms, pr absolute relative error

* Neural network
* ele. method
DA method
JB method

rms, z absolute relative error

Z — Ztrue

Ztrue
mean, z absolute relative error

mean, z absolute relative error

* Neural network
* ele. method
DA method
JB method

1072 107!
Yyue
ms, z absolute relative error

* Neural network
* ele. method
DA method
JB method




summary

Projections for the ATHENA and ECCE detectors demonstrate the exciting
capabilities and kinematic coverage of the EIC for SIDIS measurements

The electron method fails for y < 0.05, but can be improved using the hadronic
final state and DIS variables to reconstruct virtual photon axis

The use of particle flow networks to combine hadronic final state and scattered
electron information surpasses existing reconstruction methods for all of x-Q2
and p

Next steps in reconstruction:

e Currently working on virtual photon reconstruction with an architecture which could also learn correlations between
HFS particles (graph neural network), as well as exploring other deep learning approaches

Method will need to be tested with better implementation of radiative effects and continuously as the Detector 1
simulation is developed
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ATHENA full simulation,
10x275, pi+, z>0.2

e Comparison with other
HFS methods vs true py
e NN again clearly

outperforming other
methods for all pr
(integrated over all y)
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PT true Ztrue
mean, pr absolute relative error mean, z absolute relative error
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+ ele. method
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JB method
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JB method

mean, z absolute relative error
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SIDIS observables and coverage at the EIC

10
g

dRICH » pi+ tracks :
* Broad kinematics and PID coverage :
available at EIC/ATHENA

£ L
e large lever arm for SIDIS 4 PMRICH w
multiplicities and T
asymmetries

TbToF |
o? < 4—4‘
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hpDIRC

ool
5x41
H 5x100
] . M 10x100
* Many SIDIS projections made for M 10x275

ATHENA and ECCE proposals: [ 8aTS

* Beam/target/double spin
asymmetries, gluon saturation
with dihadrons, etc.




