

Development of Future Forward Calorimeter for CLAS12

6/16/22 Alec Peck

6/16/2022

Hall B & the CLAS

Purpose: 3D tomography, form factors, TDPs, GPDs

- Pre-shower, Electromagnetic, and forward tagger Calorimeters
- Central barrel: neutron detector

Minimum Ionizing Particle (MIP)

- Energy loss in matter: Bethe-Bloch formula, radiative corrections
- Large kinematic range of minimal lonization

- Energy loss in matter: Bethe-Bloch formula, radiative corrections
- Large kinematic range of minimum lonization
- Muons, other neutral hadrons

MIP Calorimeter at the CLAS

- Far forward ($\theta < 11^{\circ}$) region
 - Energy deposition and spatial tracking
 - Neutrons, K_L, and Muon detection
 - Currently at prototype stage
- Applications for Hall B and GlueX

- High-x neutron emission
- SRC pair detection
- Hadronization model
 dependence
- Leading Neutron production, neutron spin asymmetries, isospin asymmetries

- Muon tagging in open charm production
- Sensitive to GPDs
- Cross sections poorly constrained at low energy
- Relatively high decay to muons

MIP Calorimeter Design

- Array of scintillating material
- Fast, high gain readout electronics
- Signal amplitude, timing correlate to energy deposition and location
- Based on previous designs used for muon tomography, muon telescopes

MIP Calorimeter Design

- Diphenyloxazole (PPO) doped plastic scintillator
- Wavelength shifting fiber
- Silicon Photomultiplier (SiPM), "multi-pixel photon counter"

Implementation at the CLAS

- Placement behind EM cal.
- Relatively inexpensive, ~\$0.5M
 - Plastic: ~\$10/bar
 - Electronics: ~\$100/channel
- Operationally simple: readout alternative to PMTs
- LOI within next year

Benchtop Prototype

- Test unit comprised of single, scintillating bar and small scintillating tiles for triggering
 - MIP passes through bar
 - Bar scintillates in UV
 - Photons captured, wavelength shifted in fiber
 - Photons activate discrete pixels in SiPM

Benchtop Prototype

- LED simulates UV signal from MIP
- Calibrated photodiode determines photon flux

Benchtop Prototype

- SiPM pulse amplitudes produce "Finger spectrum"
- After calibration, ADC voltage converts to photon flux

GEant4 Monte Carlo (GEMC) simulations

- Simulate expected performance; energy resolution, spatial resolution
- Good responsivity to incident muons
- Known radiation source can be used to calibrate simulated SiPM response

UCR

Cosmic Ray Test

- We can test cosmic ray muons for free!
- Trigger by coincident detection at small tile above and below
- Signal collected from both ends of the bar

SiPM Readout

Cosmic ray μ^{\pm}

Cosmic Ray Test

 Pulse amplitude spectrum is a Landau distribution – what we expect for cosmic rays!

ount

- ~87% trigger efficiency
- Good correlation between ends of the bar

6/16/2022

- Characterize responsivity of scintillating bars
- Complete GEMC simulations
 of SiPM response
- Scale benchtop model (and electronics) to full size
- Propose!

References

- M. Battaglieri, "*Present and future of JLab CLAS12 physics program*" (2020)
- A. Buniatyan, "*Leading Hadron Production at HERA*", EPJ Web of Conferences (2013)
- M. Arratia *"About a forward "KLM" calorimeter for CLAS12",* (2022) PDG Reviews *"33. Passage of Particles Through Matter"* (2018)

<u>Image Sources</u> Jefferson Lab, <u>https://www.jlab.org/physics/hall-b/clas12</u> Kuraray, <u>http://kuraraypsf.jp/</u>

Thank you to the Department of Energy for funding this research!

- Neutral kaon decay channels in vector mesons
- K_L decay length typically 10-100m
- Investigate CP violation

SiPM Signal Calibration

- Pixel count determined from low-intensity "finger spectrum"
- Gaussian noise floor and ~sinusoidal fingers separated by Fourier Transform

SiPM Signal Calibration

- Incident photon count determined from Newport calibrated photodiode
 - Constant splitter ratio
 - Calibrated diode measures average power from LED
 - SiPM pixel count "measures" photons/pulse

21

Calorimeter Trigger

- Smaller tiles of scintillating plastic above and below bar trigger data collection
- Trigger occurs if both SiPM are above the 3.3 pixel threshold
 - Requiring coincidence between tiles removes background noise
 - With scintillator material added, high energy coincident spectrum appears – not Landau

