Carnegie Mellon University

Light Meson Spectroscopy in $K^0_S K^0_S$ Photoproduction at GlueX

JUNE 16, 2022

Nathaniel Dene Hoffman Presented to the 37th Annual HUGS Program at Jefferson Lab

Overview

- Introduction to GlueX Physics
- Motivation for the $K^0_S K^0_S$ Channel Analysis
- Data Selection
- Partial Wave Analysis

Introduction to GlueX Physics

• Located at Hall D in Jefferson Lab

Introduction to GlueX Physics

Diamond Radiator

Drift Chambers, Calorimeters, etc.

Introduction to GlueX Physics

- Located at Hall D in Jefferson Lab
- JLab provides electron beam which we convert to a (polarized!) photon beam
- Photon beam collides with proton (LH₂) target and creates hadrons

Introduction to GlueX Physics

Tetraquark

Carnegie Mellon University

- Located at Hall D in Jefferson Lab
- JLab provides electron beam which we convert to a (polarized!) photon beam
- Photon beam collides with proton (LH₂) target and creates hadrons
- Goal: Search for exotic mesons

6

Motivation for the $K_S^0 K_S^0$ Channel Analysis

• K-Short mesons are weak eigenstates of the $K\bar{K}$ system with a single strange quark

Motivation for the $K_S^0 K_S^0$ Channel Analysis

- K-Short mesons are weak eigenstates of the $Kar{K}$ system with a single strange quark
- Decays via weak force to $\pi^+\pi^-$ ~70% of the time and $\pi^0\pi^0$ ~30%

Motivation for the $K_S^0 K_S^0$ Channel Analysis

- K-Short mesons are weak eigenstates of the $Kar{K}$ system with a single strange quark
- Decays via weak force to $\pi^+\pi^-$ ~70% of the time and $\pi^0\pi^0$ ~30%
- $X \to K^0_S K^0_S$ must have J^{PC} = even++

Motivation for the $K^0_S K^0_S$ Channel Analysis

- K-Short mesons are weak eigenstates of the $K ar{K}$ system with a single strange quark
- Decays via weak force to $\pi^+\pi^-$ ~70% of the time and $\pi^0\pi^0$ ~30%
- $X \to K^0_S K^0_S$ must have J^{PC} = even++
- Lightest glueballs are predicted as 0^{++} and 2^{++} with scalar mass ~1500 MeV (above $K^0_S K^0_S$ threshold)

Motivation for the $K^0_S K^0_S$ Channel Analysis

- K-Short mesons are weak eigenstates of the $Kar{K}$ system with a single strange quark
- Decays via weak force to $\pi^+\pi^-$ ~70% of the time and $\pi^0\pi^0$ ~30%
- $X \to K^0_S K^0_S$ must have J^{PC} = even++
- Lightest glueballs are predicted as 0^{++} and 2^{++} with scalar mass ~1500 MeV (above $K^0_S K^0_S$ threshold)
- Important in understanding other light mesons which don't fit into $q\bar{q}$ model (potential light tetraquarks, molecular mesons)

Amsler, C., & Törnqvistb, N. A. (2004). Mesons beyond the naive quark model. Physics Reports, 389(2), 61–117. <u>https://doi.org/10.1016/j.physrep.2003.09.003</u>

Data taken from Spring 2017, Spring/Fall 2018

Data Selection

- GlueX reconstruction
 - Kinematic fit for energymomentum conservation and vertex constraints on decays
- Basic particle identification cuts (clean-up selections on pions/ proton in detectors)
- Selection on the χ^2 /NDF of the kinematic fit

- GlueX reconstruction
 - Kinematic fit for energymomentum conservation and vertex constraints on decays
- Basic particle identification cuts (clean-up selections on pions/ proton in detectors)
- Selection on the χ^2 /NDF of the kinematic fit

• We can do better: look at the kaon lifetimes in the rest frame!

- We can do better: look at the kaon lifetimes in the rest frame!
- Many events decay faster than
 expected

- We can do better: look at the kaon lifetimes in the rest frame!
- Many events decay faster than
 expected
- Using these signal and background probability distributions, we can construct weights based on the probability that an event is a signal
 - This method is called sPlot and includes proper error propagation

 Most significant nonstrange background has been removed!

- Most significant nonstrange background has been removed!
- Clear peaks at known
 resonances

• Looking at decay products from X, we can fit angular distributions to $Y_{\ell,m}(\theta,\phi)$ functions and extract components with $\ell'=0,2,\ldots$ to obtain spin

- Looking at decay products from X, we can fit angular distributions to $Y_{\ell,m}(\theta,\phi)$ functions and extract components with $\ell'=0,2,\ldots$ to obtain spin
- Adding in photon polarization, we can get another observable, reflectivity ($\varepsilon = \pm 1$) which tells us about the parity of the interaction

- Looking at decay products from X, we can fit angular distributions to $Y_{\ell,m}(\theta,\phi)$ functions and extract components with $\ell'=0,2,\ldots$ to obtain spin
- Adding in photon polarization, we can get another observable, reflectivity ($\varepsilon = \pm 1$) which tells us about the parity of the interaction
- Choice of z-axis just mixes *m* moments (helicity frame is recommended for photoproduction)

 "Model-independent" fits in each bin (no Breit-Wigners or other mass-dependent amplitudes)

S-Wave (Spin-0)

- "Model-independent" fits in each bin (no Breit-Wigners or other mass-dependent amplitudes)
- Qualitative evidence of multiple resonances

S-Wave (Spin-0)

• 5 possible m moments for

 $\ell = 2$

D-Wave (Spin-2) m = 2

- 5 possible m moments for $\ell = 2$
- Most are close to zero, but some show interesting features

70000 Total counts per 40 MeV/ c^3 60000 + Reflectivity 50000 Preliminary 40000 several f/a resonances at these masses 30000 $a_2(1700)?$ 20000 10000 0 1.4 $f'_{2}(1525)$ 1.6 1.8 2.0 Invariant Mass of $K^{0}_{S}K^{0}_{S}$ (GeV/ c^{2}) 1.0 1.2 2.0 $f_2(1270)$ $a_2(1320)$ (interfere destructively)

D-Wave (Spin-2) m = 2

Thanks for Listening!

http://www.gluex.org/thanks.html Carnegie Mellon University

Backup

Loop Suppression for Diphoton Glueball Decays

Constant related to masses of initial and final states

$$I(\Omega, \Phi) = 2\kappa \sum_{k} \left\{ (1 - P_{\gamma}) \left| \sum_{\ell,m} [\ell']_{m;k}^{(-)} \Re[Z_{\ell}^{m}(\Omega, \Phi)] \right|^{2} + (1 - P_{\gamma}) \left| \sum_{\ell,m} [\ell']_{m;k}^{(+)} \Im[Z_{\ell}^{m}(\Omega, \Phi)] \right|^{2} + (1 + P_{\gamma}) \left| \sum_{\ell,m} [\ell']_{m;k}^{(-)} \Im[Z_{\ell}^{m}(\Omega, \Phi)] \right|^{2} \right\}$$

Total intensity (counts) (1 + P_{\gamma})
$$\left| \sum_{\ell,m} [\ell']_{m;k}^{(+)} \Re[Z_{\ell}^{m}(\Omega, \Phi)] \right|^{2} + (1 + P_{\gamma}) \left| \sum_{\ell,m} [\ell']_{m;k}^{(-)} \Im[Z_{\ell}^{m}(\Omega, \Phi)] \right|^{2} \right\}$$

Proton polarization (not known)
Beam polarization fraction fraction Complex amplitudes
Beam polarization angle

$$Z_{\ell}^{m}(\Omega, \Phi) \equiv Y_{\ell}^{m}(\Omega)e^{-i\Phi}$$

Derived from: Mathieu, V., Albaladejo, M., Fernández-Ramírez, C., Jackura, A. W., Mikhasenko, M., Pilloni, A., & Szczepaniak, A.

29 P. (2019). Moments of angular distribution and beam asymmetries in $\eta \pi^0$ photoproduction at GlueX. https://doi.org/10.1103/PhysRevD.100.054017

Integration over $\cos(\theta_{HX})$ yields constants, fluctuations only show up when waves interfere!

Partial Wave Analysis (other D-Waves)

32

Baryons?

- You can identify $\Sigma^+ \to \bar{K}p$ baryons in this channel
- They are very difficult to remove without losing acceptance in the forward and backward θ_{HX} angles

