
The BDX experiment

Marco Spreafico

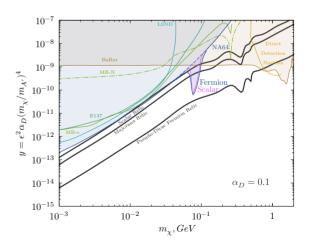
On behalf of BDX Collaboration

08 - 01 - 2022

- Introduction
 - Light Dark Matter
 - Beam dump experiments
- 2 BDX
 - Experimental setup
 - Detector
 - Background
 - Expected results
 - Tests performed
 - Status and perspective
- 3 BDX at 24 GeV

Light Dark Matter


The Light Dark Matter model predicts DM made by sub-GeV states interacting with SM via a new force

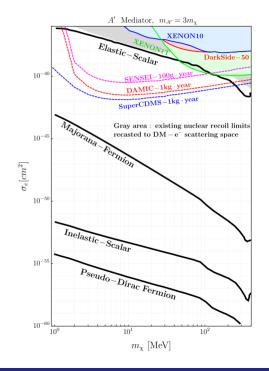

Simplest possibility: "vector portal"

 \rightarrow U(1) gauge boson (*dark photon*) coupling to electric charge

Model parameters:

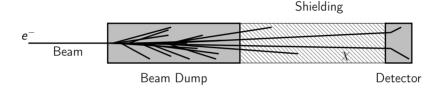
- Dark Photon mass: $m_{A'}$
- Dark Photon coupling to SM ϵ e
- Dark matter mass: m_{χ}
- Dark sector coupling: g_D ($\alpha_D \equiv g_D^2/4\pi$)

Light Dark Matter

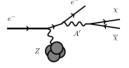

Direct detection not well suited for sub-GeV DM searches:

- DD experiments optimized for $m_{\chi} > \text{GeV}$ (e.g. WIMPs)
 - $ightarrow E_R \propto m_\chi^2/m_N \Rightarrow$ recoil energy at the limit of current generation of detectors
- LDM-SM interaction cross section depends on impinging particle velocity
 - → DD sensitivity strongly model-dependent

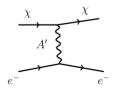
LDM at accelerators


Accelerator based experiments at the *intensity frontier* uniquely suited to search for LDM:

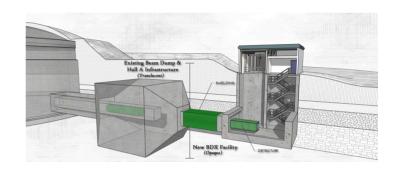
- → High intensity ⇒ increased possibility of DM production
- ightarrow Production of relativistic DM \implies testing different models



Beam dump Experiments


Beam dump experiments: direct detection of LDM produced by beam impinging on fixed target (beam dump)

- \mathbf{x} production:
 - High intensity e^- beam impinging on a dump
 - \Rightarrow relativistic χ production


- \mathbf{x} detection:
 - Detector placed behind dump ($\sim 10-100$ m)
 - χ scattering through A' exchange \Rightarrow recoil releasing detectable energy ($E_{beam}=10$ GeV $\implies E_R \gtrsim 100$ MeV)

BDX-Experimental Setup

BDX is a **JLab experiment** approved by PAC46

→ unique experiment able to produce and detect LDM

Experiment designed with two goals:

LDM production and detection

- \rightarrow High-intensity CEBAF beam, 10^{22} EOT/y
- → Medium-high energy 10 GeV
- $\rightarrow \ 1\text{m}^3 \ \text{detector}$
- ightarrow EM showers detection capability

Minimize background

- → Shielding to filter beam-related background
- → Multi layer veto for cosmogenic background
- → Segmented detector
- → Time resolution for detector-veto coincidence

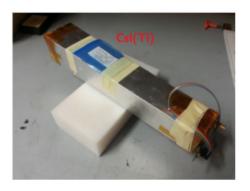
BDX-Experimental Setup

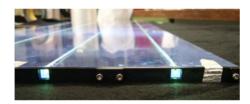
JLAB offers the best condition for BDX:

- High energy beam (11 GeV)
- High electron beam current (65 μ A)
- Fully parasitic wrt Hall-A physic programme (Moeller)

A new facility must be built in front of Hall-A beam dump:

- \Rightarrow new underground (\sim 8 m) hall 25 m downstream of Hall-A beam dump
 - ightarrow passive shielding (\sim 6.6 m iron) between dump and detector to reduce beam related background
 - $\rightarrow\,$ sizable overburden (\sim 10 m water-equivalent) to reduce cosmogenic background

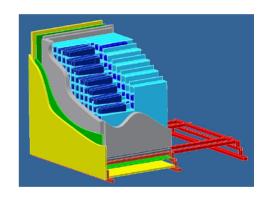

BDX - Detector


Electromagnetic Calorimeter:

- Requirement: sensitivity to high energy ($\gtrsim 100 \text{ MeV}$) EM shower
- Technology: homogeneous EM calorimeter made with Csl(Tl) crystals and SiPM readout
 - → Compact detector
 - \rightarrow High crystal density \Rightarrow increase event yield
 - \rightarrow Reuse BaBar calorimeter crystals \Rightarrow low cost

Veto System:

- Requirement:
 - High efficiency for charged particle detection
 - Hermeticity and compactness
- Technology:
 - ightarrow 2 layers of plastic scintillator counters read by WLS fibers and SiPM
 - → 5 cm lead vault between veto and calorimeter


BDX - Detector Design

Detector design:

- 800 CsI(TI) crystals (volume $\sim 0.5 \text{ m}^3$)
- Modular detector

Modular detector arrangement:

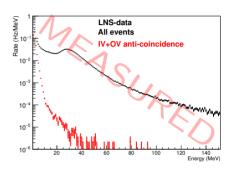
- 1 module: 10×10 crystals
 - 30 cm long
 - $50 \times 50 \text{ cm}^2$ front face
 - Crystals surrounded by a 5-cm thick lead shielding and two plastic scintillator counters
- \blacksquare 8 modules (\sim 2.6 m length)

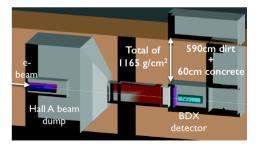
Signal detection:

- \blacksquare EM shower ($\gtrsim 100$ MeV) and no corresponding activity in the active veto
- Signal efficiency $\sim 20\%$

BDX - Backgrounds

Cosmogenic:

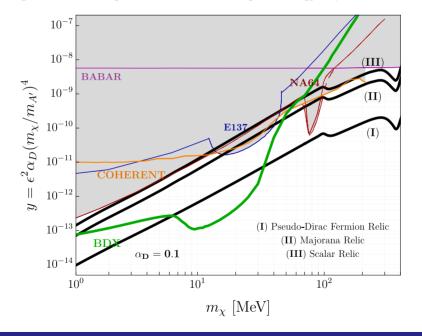

- \blacksquare μ rejected by IV-OV
- low energy *n* absorbed by overburden
- Results extrapolated from data of BDX prototype installed at INFN-LNS (similar overburden as BDX)


$$ightarrow$$
 $E_{thr}=300~{
m MeV}
ightarrow B_c \sim 5/{
m y}$

Beam-related:

- ullet u_e CC interaction main background
- all other SM particles absorbed by 6.6 m of iron + 2 m of concrete
 - ightarrow simulation validated with beam- μ measure in situ (BDX-Hodo)
- Results obtained from MC simulations

$$ightarrow$$
 $E_{thr}=300~{
m MeV}
ightarrow B_{
u} \sim 10~{
m per}~10^{22}~{
m EOT}$



BDX - Sensitivity

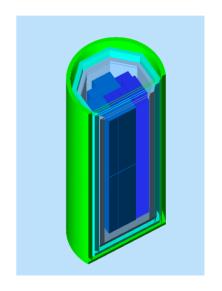
BDX will improve of 2 orders of magnitude current exclusion limits in LDM parameter space

→ test relic target in mass range not accessible to higher energy experiments

BDX - Validation

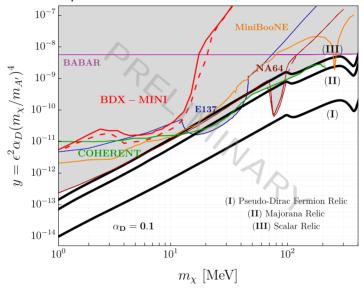
BDX technology validated in a pilot run (BDX-MINI@JLab)

Experimental setup:


- 2.2 GeV, 150μ A beam impinging on hall A
- Detector installed in a well 25 m downstream
- 20 % of BDX total charge collected (2 \times 10²¹ EOT)

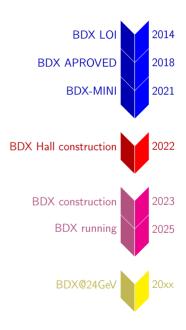
Detector:

- 0.15% of BDX active volume (44 PbWO₄ crystals, 4 dm³), SiPM readout
- High efficiency hermetic multi layer veto (2 active vetoes + passive tungsten innermost layer)


Analysis:

 Analysis optimization shown that reach can be improved over the 0 background condition

BDX- Validation

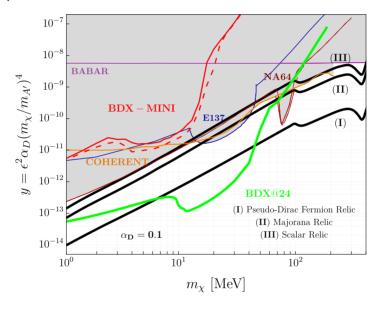

BDX-MINI results soon to be published:

- ⇒ Results comparable with flagship experiments
- ⇒ Confirmation of BDX high sensitivity

BDX - Status and perspective

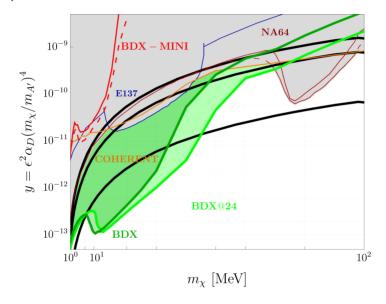
- → 2014 BDX Letter of Intent
- → 2015 BDX Proto: study of cosmic background
- → 2017 BDX Hodo: study of beam-related background
- ightarrow 2018 BDX approved at PAC46 with the highest scientific rating
- → 2021 BDX-Mini: test of BDX technology
- → 2022 BDX Hall construction?
- → 2023 BDX construction
- \rightarrow 2025 Moeller: BDX running parasitically
- \rightarrow 20xx BDX@24 GeV

How would BDX benefit from 24 GeV CEBAF upgrade?

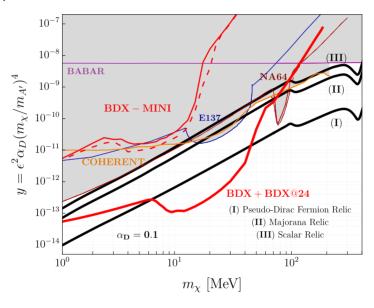

Advantages

- lacktriangle Increased number of secondary particles in the dump \Rightarrow enhanced DM production
- Some DM production mechanisms (resonant e^+e^- annihilation) are strongly dependent on the beam energy
 - ⇒ enhanced reach in poorly explored DM parameter space

Drawbacks


- Increased beam-related background
 - $\rightarrow \mu$ shielding may not be sufficient
 - → rethink experimental setup (more shielding, move away the detector)
 - ightarrow
 u background increased
 - \rightarrow need to study ν background rejection algorithm on real data
- → BDX is meant to run with a 10 GeV beam but a 24 GeV measurement could benefit BDX results

BDX@24 can complement BDX measure


■ Just an estimate! Background needs to be evaluated

BDX@24 can complement BDX measure

■ Just an estimate! Background needs to be evaluated

BDX@24 can complement BDX measure

■ Just an estimate! Background needs to be evaluated

Summary

- Dark Matter in the MeV-GeV range is largely unexplored
- Beam Dump eXperiment at JLab: search for Dark Sector particles in the MeV-GeV mass range
 - High intensity (10²² EOT/y), high energy (11 GeV)
 - Detector: 800 Csl(Tl) calorimeter + 2-layer active veto + shielding
- BDX approved at JLAB PAC with the highest scientific rating
- BDX-MINI assessed BDX capabilities:
 - Technology validation
 - Feasibility of BDX
 - Corroboration of BDX expected sensitivity
- BDX is meant to run at 10 GeV
 - 24 GeV beam can be used to extend BDX reach