The BDX experiment

Marco Spreafico

On behalf of BDX Collaboration

08 - 01 - 2022

Marco Spreafico The BDX experiment BDX 000000000

1 Introduction

- Light Dark Matter
- Beam dump experiments

2 BDX

- Experimental setup
- Detector
- Background
- Expected results
- Tests performed
- Status and perspective

3 BDX at 24 GeV

Light Dark Matter

The Light Dark Matter model predicts DM made by sub-GeV states interacting with SM via a new force

Simplest possibility: "vector portal"

 \rightarrow U(1) gauge boson (*dark photon*) coupling to electric charge

Model parameters:

- Dark Photon mass: $m_{A'}$
- Dark Photon coupling to SM ϵe
- **Dark matter mass:** m_{χ}
- Dark sector coupling: $g_D (\alpha_D \equiv g_D^2/4\pi)$

Light Dark Matter

Direct detection not well suited for sub-GeV DM searches:

- DD experiments optimized for m_{\chi} > GeV (e.g. WIMPs)
 - $\to~E_R\propto m_\chi^2/m_N\Rightarrow$ recoil energy at the limit of current generation of detectors
- LDM-SM interaction cross section depends on impinging particle velocity
 - $\rightarrow~$ DD sensitivity strongly model-dependent

LDM at accelerators

Accelerator based experiments at the *intensity frontier* uniquely suited to search for LDM:

- \rightarrow High intensity \implies increased possibility of DM production
- \rightarrow Production of relativistic DM \implies testing different models

Beam dump Experiments

Beam dump experiments: direct detection of LDM produced by beam impinging on fixed target (beam dump)

- High intensity e^- beam impinging on a dump
- $\Rightarrow~{\rm relativistic}~\chi~{\rm production}$

- χ detection:
 - \blacksquare Detector placed behind dump ($\sim 10-100$ m)
 - χ scattering through A' exchange \Rightarrow recoil releasing detectable energy ($E_{beam} = 10 \text{ GeV} \implies E_R \gtrsim 100 \text{ MeV}$)

BDX-Experimental Setup

- BDX is a **JLab experiment** approved by PAC46
 - $\rightarrow\,$ unique experiment able to produce and detect LDM

Experiment designed with two goals:

LDM production and detection

- ightarrow High-intensity CEBAF beam, 10²² EOT/y
- ightarrow Medium-high energy 10 GeV
- $\rightarrow~1m^3~detector$
- $\rightarrow\,$ EM showers detection capability

Minimize background

- \rightarrow Shielding to filter beam-related background
- \rightarrow Multi layer veto for cosmogenic background
- \rightarrow Segmented detector
- \rightarrow Time resolution for detector-veto coincidence

BDX-Experimental Setup

 JLAB offers the best condition for $\mathsf{BDX}:$

- High energy beam (11 GeV)
- High electron beam current (65 μ A)
- Fully parasitic wrt Hall-A physic programme (Moeller)

A new facility must be built in front of Hall-A beam dump:

- $\Rightarrow\,$ new underground (\sim 8 m) hall 25 m downstream of Hall-A beam dump
 - $\rightarrow\,$ passive shielding (\sim 6.6 m iron) between dump and detector to reduce beam related background
 - $\rightarrow\,$ sizable overburden (\sim 10 m water-equivalent) to reduce cosmogenic background

BDX - Detector

Electromagnetic Calorimeter:

- \blacksquare Requirement: sensitivity to high energy (\gtrsim 100 MeV) EM shower
- Technology: homogeneous EM calorimeter made with CsI(TI) crystals and SiPM readout
 - $\rightarrow~\mbox{Compact}$ detector
 - $\rightarrow~$ High crystal density \Rightarrow increase event yield
 - $\rightarrow~$ Reuse BaBar calorimeter crystals $\Rightarrow~$ low cost

Veto System:

- Requirement:
 - High efficiency for charged particle detection
 - Hermeticity and compactness
- Technology:
 - $\rightarrow\,$ 2 layers of plastic scintillator counters read by WLS fibers and SiPM
 - $\rightarrow~5$ cm lead vault between veto and calorimeter

BDX - Detector Design

Detector design:

- \blacksquare 800 CsI(Tl) crystals (volume \sim 0.5 m^3)
- Modular detector

Modular detector arrangement:

- 1 module: 10×10 crystals
 - 30 cm long
 - $50 \times 50 \text{ cm}^2$ front face
 - Crystals surrounded by a 5-cm thick lead shielding and two plastic scintillator counters
- 8 modules (\sim 2.6 m length)

Signal detection:

- $\scriptstyle \bullet$ EM shower (\gtrsim 100 MeV) and no corresponding activity in the active veto
- Signal efficiency $\sim 20\%$

BDX - Backgrounds

Cosmogenic:

- $\blacksquare~\mu$ rejected by IV-OV
- low energy *n* absorbed by overburden
- Results extrapolated from data of BDX prototype installed at INFN-LNS (similar overburden as BDX)
 - $ightarrow~E_{thr}=300~{
 m MeV}
 ightarrow B_c\sim 5/{
 m y}$

Beam-related:

- ν_e CC interaction main background
- all other SM particles absorbed by 6.6 m of iron + 2 m of concrete
 - $\rightarrow\,$ simulation validated with beam- $\mu\,$ measure in situ (BDX-Hodo)
- Results obtained from MC simulations
 - $ightarrow~{\it E_{thr}}=$ 300 MeV $ightarrow~{\it B_{
 u}}\sim$ 10 per 10²² EOT

BDX - Sensitivity

BDX will improve of 2 orders of magnitude current exclusion limits in LDM parameter space

ightarrow test relic target in mass range not accessible to higher energy experiments

BDX - Validation

BDX technology validated in a pilot run (BDX-MINI@JLab)

Experimental setup:

- \blacksquare 2.2 GeV, 150 μA beam impinging on hall A
- Detector installed in a well 25 m downstream
- \blacksquare 20 % of BDX total charge collected (2 \times 10^{21} EOT)

Detector:

- 0.15% of BDX active volume (44 PbWO₄ crystals, 4 dm³), SiPM readout
- High efficiency hermetic multi layer veto (2 active vetoes + passive tungsten innermost layer)

Analysis:

 Analysis optimization shown that reach can be improved over the 0 background condition

BDX- Validation

BDX-MINI results soon to be published:

- \Rightarrow Results comparable with flagship experiments
- $\Rightarrow~{\rm Confirmation}~{\rm of}~{\rm BDX}$ high sensitivity

 \rightarrow

 \rightarrow

rating

2014

2018

2021

2022

2025

BDX - Status and perspective

 \rightarrow 2014 - BDX Letter of Intent BDX LOI 2015 - BDX Proto: study of cosmic background BDX APROVED 2017 - BDX Hodo: study of beam-related background **BDX-MINI** \rightarrow 2018 - BDX approved at PAC46 with the highest scientific \rightarrow 2021 - BDX-Mini: test of BDX technology BDX Hall construction \rightarrow 2022 - BDX Hall construction? BDX construction \rightarrow 2023 - BDX construction BDX running \rightarrow 2025 - Moeller: BDX running parasitically \rightarrow 20xx - BDX@24 GeV BDX@24GeV

BDX @ 24 GeV

How would BDX benefit from 24 GeV CEBAF upgrade?

Advantages

- Increased number of secondary particles in the dump \Rightarrow enhanced DM production
- Some DM production mechanisms (resonant e^+e^- annihilation) are strongly dependent on the beam energy
 - $\Rightarrow\,$ enhanced reach in poorly explored DM parameter space

Drawbacks

- Increased beam-related background
 - $\rightarrow~\mu$ shielding may not be sufficient
 - $\rightarrow\,$ rethink experimental setup (more shielding, move away the detector)
 - $\rightarrow~\nu$ background increased
 - $\rightarrow\,$ need to study ν background rejection algorithm on real data
- $\rightarrow\,$ BDX is meant to run with a 10 GeV beam but a 24 GeV measurement could benefit BDX results

BDX @ 24 GeV

BDX@24 can complement BDX measure

Just an estimate! Background needs to be evaluated

BDX @ 24 GeV

BDX@24 can complement BDX measure

Just an estimate! Background needs to be evaluated

Introducton 000	BDX 00000000	BDX @ 24 GeV ○○●
Summary		

- Dark Matter in the MeV-GeV range is largely unexplored
- Beam Dump eXperiment at JLab: search for Dark Sector particles in the MeV-GeV mass range
 - High intensity (10²² EOT/y), high energy (11 GeV)
 - Detector: 800 CsI(Tl) calorimeter + 2-layer active veto + shielding
- BDX approved at JLAB PAC with the highest scientific rating
- BDX-MINI assessed BDX capabilities:
 - Technology validation
 - Feasibility of BDX
 - Corroboration of BDX expected sensitivity
- BDX is meant to run at 10 GeV
 - 24 GeV beam can be used to extend BDX reach