Beyond hadronic physics with secondary beams @JLAB:

Mariangela Bondì INFN - Sezione di Roma Tor Vergata

Università di Roma Tor Vergata

New research lines using secondary beams

- The interaction of high-current (O(100µA)), medium-energy (O(10GeV)) electron beam with a dump produces intense secondary beams:
 - Light Dark Matter (if exists)
 - BDX
 - > Neutrinos
 - CEvNS
 - > Muons
 - Proton radius

Light Dark matter beam: production

In the "dark sector" scenario, 3 main LDM production mechanisms in fixed-target, lepton-beam experiments

A) A'-strahlung:

- > Radiative A' emission in nucleus EM field followed by A'->XX
- > Scales as $Z^2 \alpha^3$
- > Forward-boosted, high-energy A' emission

B) Non-resonant e+e- annhilation:

- > $e+e- \rightarrow A'\gamma$ followed by A'->XX
- > Scales as $Z\alpha^2$
- > Forward-backward A' emission in the CM

C) Resonant e+e- annhilation:

- > e+e- -> A'->XX
- Scales as Zα
- \succ Breit-Wigner like cross section with $M_{A'}=\sqrt{2m_eE}$

BDX @ 20 GeV e- beam

- The Beam Dump Experiment is optimized to run
 @ 12 GeV e- beam
 - > Fully parasitic wrt Moller experiment
 - New facility (Civil construction + passive shielding) downstream HallA beam dump
 - Detector : EM calorimeter + Veto systems

 10^{-7} 10^{-8} BABAR $\epsilon^2 \alpha_D (m_{\chi}/m_{A'})^4$ 10^{-9} (\mathbf{II}) BDX - MINI 10^{-10} 10^{-11} COHERI Ш 10^{-12} S BDX + BDX@24(I) Pseudo-Dirac Fermion Relic 10^{-13} (II) Majorana Relic (III) Scalar Relic 10^{-14} 10^{0} 10^{1} 10^{2} m_{χ} [MeV]

- BDX can benefit of 24 GeV e- beam extending the reach
 - Pro: Increase number of secondary particles in the dump -> enhanced DM production
 - WARNING: beam-related background need to be studied

see M. Spreafico talk

Neutrino production in the dump

- Neutrinos production in the dump due to muon and pion decays
 - The majority (low-energy v) come from pion and muon decay at rest
 - π decay produces a prompt 28.5 MeV v_µ along with
 a µ which subsequently decay producing v_p e v_m
 - Weak angular dependence
 - High-energy v from in-flight pion and muon decay

Detector 5

Neutrino secondary beam

- Neutrinos flux estimated through MC simulations based on FLUKA
 - Used Hall-A beam dump description implemented in FLUKA by the JLAB Rad Con
 - Neutrino flux evaluated both for 10Gev e- beam and 20GeV ebeam
 - used current dump (not optimized) for 20GeV simulation
 - Flux computed on several planes located both downstream and on top of Hall-A beam dump

Credit to A. Fulci

Detector 1 Credit to A. Fulci

Neutrino secondary beam

- Neutrinos flux estimated through MC simulations based on FLUKA
 - Used Hall-A beam dump description implemented in FLUKA by the JLAB Rad Con
 - Neutrino flux evaluated both for 10Gev e- beam and 20GeV ebeam
 - used current dump (not optimized) for 20GeV simulation
 - Flux computed on several planes located both downstream and on top of Hall-A beam dump
 - Flux comparable to SNS@ Oak Ridge National Lab one

Physics case for a Neutrino beam @ JLAB

Coherent Elastic v-Nucleus Scattering

- Integrated cross section as a function of v energy Low energy neutrinos (< 100 MeV) coherently scatter on >entire target nucleus $q < (1/R_{N})$
- Cross section scaling with N² \succ
- The largest cross section among neutrino scattering >channels for Ev < 100 MeV
- Low recoil energy due to kinematics O(10 keV) >
- First measurement in 2017 on CsI by COHERENT >collaboration (~134 events)
- why interesting?: *
 - weak parameters -> mixing angle
 - nuclear properties -> neutrons distribution radius >
 - sterile neutrino >
 - neutrino magnetic moment >
 - non standard interaction mediated by exotic particles >

Requirements:

10-35

10-3

10-37

10-38

10-39

10-40

10-41

7 [cm²]

High-intense v-flux >

100

 \succ v-flux energy range: few MeV - few 100 MeV

SNS

10¹

Ev [MeV]

LBNF

10²

detector has be sensitive to small energy \succ depositions

Reactor

backgrounds need to be sufficiently small to \succ observe the signal.

CEvNS measurement @ JLAB

v-beam @ JLAB

- Produced by the interaction between e- beam and Hall A dump in a energy range: 10MeV - 300 MeV
- > Neutrino flux @ 10 GeV : ~10¹⁸ v/m² at ~10 m above the dump for $10^{22}EOT$
- Neutrino flux @ 20 GeV : ~2x10¹⁸ v/m² at ~10 m above the dump for 10²²EOT

Detector technologies:

- > Detector located 10m on top of the dump
- > Two detection technology are under study:
 - Csl
 - LAr-TPC
- Veto system: active (plastic ...) and passive (lead, water, borate silicone and/or cadmium sheet layers...)

- Backgrounds:
 - beam-related background: neutron
 - beam-unrelated background: cosmic, radioactive detector contamination, environmental radioactivity
 - Extensive Monte-Carlo simulations and measurements campaign in situ are necessary

CEVNS measurement @ JLAB

- Two targets under study: \otimes
 - CsI(TI) crystal: \succ
 - Pro: High-density, high LY, heavy nuclei
 - Cons: radioactive material, afterglow
 - Liquid Argon based detector: \succ
 - Pro: Low threshold, directionality
 - Cons: depleted Ar

A state of a state of a

Expected yield:			· · · · · · · · · · · · · · · · · · ·	LAr - 1m3		
Detector	e- @ 10 GeV v flux: 1E8 v/m² (*)	e- @ 20 GeV v flux: 2E8 v/m ² (*)				z
CsI (1m ³) [thr : 10 keV]	8000		10		PRELIMINA	
LAr (1m ³) [thr: 10 keV]	2500				Energy threshold	Er_th(ke'
(*) for 10 ²² EOT	1	1	Cre	edit to A. Fulci,	S. Grazzi, A. Pillor	ו ¹⁰

S

CEBAF @ 10 GeV

10

Csl detector - 1m3

Energ¹/^othreshold (keV)

Integrated events

(*) for 10²² EOT

vBDX-CEvNS @ 20 GeV

- **Two targets under study:**
 - ➤ CsI(TI) crystal:
 - Pro: High-density, high LY, heavy nuclei
 - Cons: radioactive material, afterglow
 - Liquid Argon based detector:
 - Pro: Low threshold, directionality
 - Cons: depleted Ar

Expected yield:

· · · · · · · · · · · · · · · · · · ·	-				
Detector	e- @ 10 GeV v flux: 1E8 v/m ² (*)	e- @ 20 GeV v flux: 2E8 v/m² (*)	grated events	LAr - 1m3	
CsI (1m ³) [thr : 10 keV]	~8000	~15000		PRELIMINARY	
LAr (1m³) [thr: 10 keV]	~2500	~4500	10	¹⁰ Energy threshold (Kev	
				$\mathbf{A} = \{\mathbf{x}, \mathbf{y}, \mathbf{x}, \mathbf{y}, $	

CEBAF @ 20 GeV

10

Credit to A. Fulci, S. Grazzi, A. Pilloni ¹¹

10²

Er th(keV)

(*) for 10²² EOT

Muon production in the dump

Credit to A. Fulci

Muon secondary beam Muon flux estimated using the same FLUKA setup used for neutrinos

- *
 - Flux scored on a plane to exit of the concrete dump \succ
 - Flux is larger than CERN's M2 beam line one (Eµ>100GeV) \succ

 10^{-}

5 6 8 9 10

E(GeV)

10-12

0

Y(cm

-40-20

14 E (GeV)

Proton radius measurement with muon beam

- Proton radius can be measured with 2 techniques:
 - > Leptonic scattering
 - Spettroscopi measurement
- Persistent discrepancy between methods -> Proton radius puzzle

- Secondary muons produced in HALLA beam dump can be extracted and directed toward a new Hall
 - A magnet-based system to focus and to measure µ momentum -> study on going

Summary

- High intensity extracted electron beams are a precious source of secondary beams:
 - Light Dark Matter (if exists)
 - > Neutrinos
 - > Muons
- A 24 GeV primary electron beam impinged on Hall-A dump can produce higher intensity secondary beams then the 12 GeV one
 - Neutrino beam with a DAR spectrum : flux of 2E8 v/m² for 10²² EOT e-@ 20 GeV
 - Muon beam with a Bremsstrahlung-like spectrum. Energy range : O(10 MeV) O(10 GeV). Flux @ 20 GeV : 5E-6 µ/EOT.
- Secondary beams can be exploited to explore "hot" physics scenario