Constraining New Physics with PVDIS

Sonny Mantry University of North Georgia (UNG)

Physics Beyond the Standard Model High Energy Workshop Series

> *Jefferson Lab August 1st, 2022*

Outline

- The C_{iq} couplings
- SMEFT Analysis
- Dark Photons
- Dark-Z
- Charged Lepton Violation $(e \rightarrow \mu)$

Contact Interactions

• For $Q^2 << (M_Z)^2$ limit, electron-quark scattering via the weak neutral current is mediated by contact interactions:

$$\mathcal{L} = \frac{G_F}{\sqrt{2}} \sum_{q} \left[C_{1q} \,\bar{\ell} \gamma^{\mu} \gamma_5 \ell \bar{q} \gamma_{\mu} q + C_{2q} \,\bar{\ell} \gamma^{\mu} \mathcal{Q}_{\mathcal{M}} \bar{q} \gamma_{\overline{\mu}} \mathcal{Y}_{\mathcal{G}} q + \mathcal{C}_{1d} \mathcal{C}_{\mathcal{H}} \bar{\ell} \gamma^{\mu} \bar{\ell} \gamma_{\mathcal{G}} \bar{\ell} \gamma_{\mathcal{H}} \gamma_{\mathcal{G}} \gamma_{\mathcal{G}} \gamma_{\mathcal{G}} \bar{\ell} \gamma_{\mathcal{H}} \gamma_{\mathcal{G}} \gamma_{\mathcal{G$$

• Tree-level Standard Model values:

$$\in \qquad \in \\ C_{1u} = -\frac{1}{2} + \frac{4}{3} \sin^2(\theta_W) , \quad C_{2u} = -\frac{1}{2} + 2\sin^2(\theta_W) , \qquad C_{3u} = \frac{1}{2} , \\ C_{1d} = \frac{1}{2} - \frac{2}{3} \sin^2(\theta_W) , \qquad C_{2d} = \frac{1}{2} - 2\sin^2(\theta_W) , \qquad C_{3d} = -\frac{1}{2}$$

New Physics Effects

• In the $Q^2 \ll M_Z^2$ limit, electron-quark interactions via the weak neutral current can be parameterized by contact interactions:

$$\mathcal{L} = \frac{G_F}{\sqrt{2}} \sum_{q} \left[C_{1q}^{Q_{weak}^p} \bar{\ell}_{\gamma}^{2} \gamma_5^{2} \ell \bar{q}_{\gamma\mu}^{q} q + C_{2q}^{2} \bar{\ell}_{\gamma}^{W} \ell \bar{q}_{\gamma\mu} \gamma_5 q + C_{3q} \bar{\ell}_{\gamma}^{\mu} \gamma_5 \ell \bar{q}_{\gamma\mu} \gamma_5 q \right]$$

• New physics contact interactions arise as a shift in the WNC couplings compared to the SM prediction:

• Deviations from the SM prediction of the WNC couplings will lead to corresponding deviations in the extracted value of the weak mixing angle.

New Physics Effects

$$C_{iq} = C_{iq}(\mathrm{SM}) + \Delta C_{iq}$$

• Effective Lagrangian for New Physics Contributions can be parameterized as: $\delta \mathcal{L} = \frac{g^2}{\Lambda^2} \sum_{\ell,q} \left\{ \eta_{LL}^{\ell q} \bar{\ell}_L \gamma_\mu \ell_L \bar{q}_L \gamma_\mu q_L + \eta_{LR}^{\ell q} \bar{\ell}_L \gamma_\mu \ell_L \bar{q}_R \gamma_\mu q_R + \eta_{RL}^{\ell q} \bar{\ell}_R \gamma_\mu \ell_R \bar{q}_L \gamma_\mu q_L + \eta_{RR}^{\ell q} \bar{\ell}_R \gamma_\mu q_R \right\}$

• Shift in the WNC couplings due to new physics contact interactions:

$$\begin{split} \Delta C_{1q} &= \frac{g^2}{\Lambda^2} \frac{\eta_{LL}^{\ell q} + \eta_{LR}^{\ell q} - \eta_{RL}^{\ell q} - \eta_{RR}^{\ell q}}{2\sqrt{2}G_F},\\ \Delta C_{2q} &= \frac{g^2}{\Lambda^2} \frac{\eta_{LL}^{\ell q} - \eta_{LR}^{\ell q} + \eta_{RL}^{\ell q} - \eta_{RR}^{\ell q}}{2\sqrt{2}G_F}, \end{split}$$

Each of the WNC couplings probe a unique combination of chiral structures thereby complementing constraints arising from other low energy experiments or colliders.

Contact Interactions

 $\mathcal{L} = \frac{G_F}{\sqrt{2}} \sum_{a} \left[C_{1q} \,\bar{\ell} \gamma^{\mu} \gamma_5 \ell \bar{q} \gamma_{\mu} q + C_{2q} \,\bar{\ell} \gamma^{\mu} \ell \bar{q} \gamma_{\mu} \gamma_5 q + C_{3q} \,\bar{\ell} \gamma^{\mu} \gamma_5 \ell \bar{q} \gamma_{\mu} \gamma_5 q \right]$

 $C_{2i} \equiv 2g_V^e g$

 $C_{1i} \equiv 2g_A^e g_V^i$

- Precision measurements of the electroweak couplings can also be translated into
 constraints in specific models.
- For example, for the different LQ states only particular chiral structures arise which leads to a corresponding pattern of shifts in the WNC couplings:

ZEUS (prel.) 1994-2000 $e^{\pm}p$										
Coupling structure							e		95% CL [TeV]	
Model	a_{LL}^{ed}	a_{LR}^{ed}	a_{RL}^{ed}	a_{RR}^{ed}	a_{LL}^{eu}	a_{LR}^{eu}	a_{RL}^{eu}	a_{RR}^{eu}	M_{LQ}/λ_{LQ}	
$\begin{array}{c} S^{L}_{\circ} \\ S^{R}_{\circ} \\ \tilde{S}^{R}_{\circ} \\ S^{L}_{1/2} \\ S^{R}_{1/2} \\ \tilde{S}^{L}_{1/2} \\ \tilde{S}^{L}_{1/2} \\ S^{L}_{1} \end{array}$	+1	$-\frac{1}{2}$	$-\frac{1}{2}$	$+\frac{1}{2}$	$+\frac{1}{2}$ $+\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$	$+\frac{1}{2}$	$\begin{array}{c} 0.75 \\ 0.69 \\ 0.31 \\ 0.91 \\ 0.69 \\ 0.50 \\ 0.55 \end{array}$	$\Delta C_{1q} = \frac{g^2}{\Lambda^2} \frac{\eta_{LL}^{\ell q} + \eta_{LR}^{\ell q} - \eta_{RL}^{\ell q} - \eta_{RR}^{\ell q}}{2\sqrt{2}G_F},$ $\frac{g^2}{\eta_{II}^{\ell q}} - \frac{\eta_{IR}^{\ell q} + \eta_{RR}^{\ell q} - \eta_{RR}^{\ell q}}{\eta_{IR}^{\ell q} + \eta_{RR}^{\ell q} - \eta_{RR}^{\ell q}},$
$\begin{array}{c} V^L_{\circ} \\ V^R_{\circ} \\ \tilde{V}^R_{\circ} \\ V^L_{1/2} \\ V^R_{1/2} \\ \tilde{V}^L_{1/2} \\ \tilde{V}^L_{1/2} \\ V^L_{1} \end{array}$	-1 -1	+1	+1	-1	-2	+1	+1	-1	$\begin{array}{c} 0.69 \\ 0.58 \\ 1.03 \\ 0.49 \\ 1.15 \\ 1.26 \\ 1.42 \end{array}$	$\Delta C_{2q} = \frac{\sigma}{\Lambda^2} \Delta E - E - E - E - E - E - E - E - E - E $

Accessing C_{iq} via Parity-Violating Observables

•Atomic Parity Violation (APV): Sensitive to C_{1q} couplings via $Q_W(Z, N)$

• Parity Violating Elastic Scattering (Qweak, P2): Sensitive to C_{1q} couplings through $Q_W(Z = 1, N = 0)$

$$Q_W(Z,N) = -2[\frac{C_{1u}}{(2Z+N)} + \frac{C_{1d}}{(Z+2N)}]$$

For the isocalar deuteron target, structure function effects largely cancel

9

Parity-Violating e-D Asymmetry

 Parity-violating e-D asymmetry is a powerful probe of the WNC couplings:

$$A_{\rm PV} \equiv \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \simeq \frac{|A_Z|}{|A_\gamma|} \simeq \frac{G_F Q^2}{4\pi\alpha} \simeq 10^{-4} Q^2$$

• Due to the isoscalar nature of the Deuteron target, the dependence of the asymmetry on the structure functions largely cancels (Cahn-Gilman formula).

• e-D asymmetry allows a precision measurement of the weak mixing angle.

Corrections to Cahn-Gilman

• Hadronic effects appear as corrections to the Cahn-Gilman formula:

$$A_{RL} = -\frac{G_F Q^2}{2\sqrt{2}\pi\alpha} \frac{9}{10} \left[\tilde{a}_1 + \tilde{a}_2 \frac{1 - (1 - y)^2}{1 + (1 - y)^2} \right]$$
$$\tilde{a}_j = -\frac{2}{3} \frac{(2C_{ju} - C_{jd})}{[1 + R_j(\text{new}) + R_j(\text{sea}) + R_j(\text{CSV}) + R_j(\text{TMC}) + R_j(\text{HT})]}$$
$$\bigwedge_{\text{New physics}} \bigwedge_{\text{Sea quarks}} \frac{1}{C_{\text{harge symmetry}}} \prod_{\text{Target mass}} \frac{1}{F_{\text{Higher}}}$$

 Hadronic effects must be well understood before any claim for evidence of new physics can be made.

[Bjorken, Hobbs, Melnitchouk; SM, Ramsey-Musolf, Sacco; Belitsky, Mashanov, Schafer; Seng, Ramsey-Musolf,]

Status of WNC Couplings

• The combination $2C_{1u} - C_{1d}$ is severely constrained by Qweak and Atomic Parity violation.

• The combination ${}^{2}C_{2u} - C_{2d}$ is known to within ~50% from the JLAB 6 GeV experiment:

 $2C_{2u} - C_{2d} = -0.145 \pm 0.068$

SOLID is expected significantly improve on this result.

Leptophobic Z'

• Leptophobic Z's are an interesting BSM scenario since they only shifts the C_{2q} couplings in A_{PV}

• Leptophobic Z's only affect the b(x) term or the C_{2q} coefficients in $A_{PV:}$

0.25
 Boughazel, Emmert, Kutz, SM, Nycz, Petriello, Simsek, Wiegand, Zheng]
 SOLID is extractivene weak mixing angle with higher precision than the EIC.
 Boughazel, Emmert, Kutz, SM, Nycz, Petriello, Simsek, Wiegand, Zheng]
 SOLID is extractivene weak mixing angle with higher precision than the EIC.
 How does SOLID measurement contribute in SLAC-E158
 Boughazel, Emmert, Kutz, SM, Nycz, Petriello, Simsek, Wiegand, Zheng]
 How does SOLID measurement contribute in SLAC-E158
 Boughazel, Emmert, Kutz, SM, Nycz, Petriello, Simsek, Wiegand, Zheng]
 How does SOLID measurement contribute in SLAC-E158
 Boughazel, Emmert, Kutz, SM, Nycz, Petriello, Simsek, Wiegand, Zheng]

LEP1 LHC

SLC

MOLLER

0.23

Standard Model Effective Theory (SMEFT) Operator Basis [Boughazel, Petriello, Wiegand]

• The SMEFT basis often used in global fit analysis to constrain new physics beyond the electroweak scale:

$$\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{\Lambda^2} \sum_i C_i^6 \mathcal{O}_{6,i} + \frac{1}{\Lambda^4} \sum_i C_i^8 \mathcal{O}_{8,i} + \dots$$

• Relevant SMEFT operators for DIS processes at dim-6 and dim-8

	Dimension 6	Dimension 8					
$\mathcal{O}_{lq}^{(1)}$	$\left(\overline{l}\gamma^{\mu}l\right)\left(\overline{q}\gamma_{\mu}q\right)$	$\mathcal{O}_{l^2q^2D^2}^{(1)}$	$D^{\nu} \left(\overline{l} \gamma^{\mu} l \right) D_{\nu} \left(\overline{q} \gamma_{\mu} q \right)$				
$\mathcal{O}_{lq}^{(3)}$	$\left(\overline{l} \gamma^{\mu} \tau^{i} l \right) \left(\overline{q} \gamma_{\mu} \tau^{i} q \right)$	$\mathcal{O}_{l^{2}q^{2}D^{2}}^{(3)}$	$D^{\nu}\left(\bar{l}\gamma^{\mu}\tau^{i}l\right)D_{\nu}\left(\bar{q}\gamma_{\mu}\tau^{i}q\right)$				
\mathcal{O}_{eu}	$(\overline{e}\gamma^{\mu}e)\left(\overline{u}\gamma_{\mu}u\right)$	$\left egin{array}{c} \mathcal{O}_{e^2 u^2 D^2}^{(1)} ight $	$D^{\nu}\left(\overline{e}\gamma^{\mu}e\right)D_{\nu}\left(\overline{u}\gamma_{\mu}u\right)$				
\mathcal{O}_{ed}	$(\overline{e}\gamma^{\mu}e)\left(\overline{d}\gamma_{\mu}d\right)$	$\mathcal{O}_{e^2d^2D^2}^{(1)}$	$D^{\nu}\left(\overline{e}\gamma^{\mu}e\right)D_{\nu}\left(\overline{d}\gamma_{\mu}d\right)$				
\mathcal{O}_{lu}	$\left(\overline{l}\gamma^{\mu}l\right)\left(\overline{u}\gamma_{\mu}u\right)$	$\mathcal{O}_{l^2u^2D^2}^{(1)}$	$D^{\nu}\left(\bar{l}\gamma^{\mu}l\right)D_{\nu}\left(\overline{u}\gamma_{\mu}u\right)$				
\mathcal{O}_{ld}	$\left(\overline{l}\gamma^{\mu}l ight)\left(\overline{d}\gamma_{\mu}d ight)$	$\left \begin{array}{c} \mathcal{O}_{l^2d^2D^2}^{(1)} \end{array} \right $	$D^{ u}\left(ar{l}\gamma^{\mu}l ight)D_{ u}\left(ar{d}\gamma_{\mu}d ight)$				
\mathcal{O}_{qe}	$\left(\overline{q}\gamma^{\mu}q\right)\left(\overline{e}\gamma_{\mu}e\right)$	$\mathcal{O}_{q^2e^2D^2}^{(1)}$	$D^{\nu}\left(\overline{q}\gamma^{\mu}q\right)D_{\nu}\left(\overline{e}\gamma_{\mu}e\right)$				

$\frac{\text{SMEFT vs } C_{iq}}{\text{[Boughazel, Petriello, Wiegand]}}$

• For low energy experiments, typically the C_{iq} basis of operators based on V-A structure after EWSB is used:

$$\begin{aligned} \mathcal{L}_{PV} &= \frac{G_F}{\sqrt{2}} \bigg[(\bar{e}\gamma^{\mu}\gamma_5 e) (C_{1u}^6 \bar{u}\gamma_{\mu}u + C_{1d}^6 \bar{d}\gamma_{\mu}d) + (\bar{e}\gamma^{\mu} e) (C_{2u}^6 \bar{u}\gamma_{\mu}\gamma_5 u + C_{2d}^6 \bar{d}\gamma_{\mu}\gamma_5 d) \\ &\quad + (\bar{e}\gamma^{\mu} e) (C_{Vu}^6 \bar{u}\gamma_{\mu}u + C_{Vd}^6 \bar{d}\gamma_{\mu}d) + (\bar{e}\gamma^{\mu}\gamma_5 e) (C_{Au}^6 \bar{u}\gamma_{\mu}\gamma_5 u) \\ &\quad + D^{\nu} \bigg(\bar{e}\gamma^{\mu}\gamma_5 e \bigg) D_{\nu} \bigg(\frac{C_{1u}^8}{v^2} \bar{u}\gamma_{\mu}u + \frac{C_{1d}^8}{v^2} \bar{d}\gamma_{\mu}d \bigg) + D^{\nu} \bigg(\bar{e}\gamma^{\mu} e \bigg) D_{\nu} \bigg(\frac{C_{2u}^8}{v^2} \bar{u}\gamma_{\mu}\gamma_5 u + \frac{C_{2d}^8}{v^2} \bar{d}\gamma_{\mu}\gamma_5 d \bigg) \\ &\quad + D^{\nu} \bigg(\bar{e}\gamma^{\mu} e \bigg) D_{\nu} \bigg(\frac{C_{Vu}^8}{v^2} \bar{u}\gamma_{\mu}u + \frac{C_{Vd}^8}{v^2} \bar{d}\gamma_{\mu}d \bigg) + D^{\nu} \bigg(\bar{e}\gamma^{\mu}\gamma_5 e \bigg) D_{\nu} \bigg(\frac{C_{Au}^8}{v^2} \bar{u}\gamma_{\mu}\gamma_5 u \bigg) \bigg]. \end{aligned}$$

• One can find relations between the two bases:

$$\begin{split} C_{1u}^{6} &= 2(g_{R}^{e} - g_{L}^{e})(g_{R}^{u} + g_{L}^{u}) + \frac{v^{2}}{2\Lambda^{2}} \left\{ -\left(C_{lq}^{(1)} - C_{lq}^{(3)}\right) + C_{eu} + C_{qe} - C_{lu} \right\} \\ C_{2u}^{6} &= 2(g_{R}^{e} + g_{L}^{e})(g_{R}^{u} - g_{L}^{u}) + \frac{v^{2}}{2\Lambda^{2}} \left\{ -\left(C_{lq}^{(1)} - C_{lq}^{(3)}\right) + C_{eu} - C_{qe} + C_{lu} \right\} \\ C_{1d}^{6} &= 2(g_{R}^{e} - g_{L}^{e})(g_{R}^{d} + g_{L}^{d}) + \frac{v^{2}}{2\Lambda^{2}} \left\{ -\left(C_{lq}^{(1)} + C_{lq}^{(3)}\right) + C_{ed} + C_{qe} - C_{ld} \right\} \\ C_{2d}^{6} &= 2(g_{R}^{e} + g_{L}^{e})(g_{R}^{d} - g_{L}^{d}) + \frac{v^{2}}{2\Lambda^{2}} \left\{ -\left(C_{lq}^{(1)} + C_{lq}^{(3)}\right) + C_{ed} - C_{qe} + C_{ld} \right\} \\ C_{Vu}^{6} &= 2(g_{R}^{e} + g_{L}^{e})(g_{R}^{u} + g_{L}^{u}) + \frac{v^{2}}{2\Lambda^{2}} \left\{ \left(C_{lq}^{(1)} - C_{lq}^{(3)}\right) + C_{eu} + C_{qe} + C_{lu} \right\} \\ C_{Au}^{6} &= 2(g_{R}^{e} - g_{L}^{e})(g_{R}^{u} - g_{L}^{u}) + \frac{v^{2}}{2\Lambda^{2}} \left\{ \left(C_{lq}^{(1)} - C_{lq}^{(3)}\right) + C_{eu} - C_{qe} - C_{lu} \right\} \\ C_{Vd}^{6} &= 2(g_{R}^{e} - g_{L}^{e})(g_{R}^{u} - g_{L}^{u}) + \frac{v^{2}}{2\Lambda^{2}} \left\{ \left(C_{lq}^{(1)} - C_{lq}^{(3)}\right) + C_{eu} - C_{qe} - C_{lu} \right\} \\ C_{Vd}^{6} &= 2(g_{R}^{e} - g_{L}^{e})(g_{R}^{d} + g_{L}^{d}) + \frac{v^{2}}{2\Lambda^{2}} \left\{ \left(C_{lq}^{(1)} - C_{lq}^{(3)}\right) + C_{ed} + C_{qe} + C_{lu} \right\} . \end{split}$$

SMEFT Constraints from Drell-Yan at LHC

[Boughazel, Petriello, Wiegand]

• The SMEFT Wilson coefficients that affect PVES also contribute to the Drell-Yan process at the LHC $\frac{d\sigma_{q\bar{q}}}{dm_{u}^{2}dYdc_{\theta}} = \frac{1}{32\pi m_{u}^{2}\hat{s}}f_{q}(x_{1})f_{\bar{q}}(x_{2})\left\{\frac{d\hat{\sigma}_{q\bar{q}}^{\gamma\gamma}}{dm_{u}^{2}dYdc_{\theta}} + \frac{d\hat{\sigma}_{q\bar{q}}^{\gamma\bar{Z}}}{dm_{u}^{2}dYdc_{\theta}} + \frac{d\hat{\sigma}_{q\bar{q}}^{Z\bar{Z}}}{dm_{u}^{2}dYdc_{\theta}} + \frac{d\hat{\sigma}_{q\bar{q}}^{Z\bar{Z}}}{dm_{u}^{2}dYdc_{\theta}}\right\}$

 PVES and the LHC can be complementary to each other in constraining new physics

Lifting Flat Directions

[Boughazel, Petriello, Wiegand]

• PVES and Drell-Yan at the LHC are sensitive to different combinations of the SMEFT Wilson coefficients.

• PVES can lift "flat directions" by probing orthogonal directions in the SMEFT parameter space compared to the LHC

Lifting Flat Directions

[Boughazel, Petriello, Wiegand]

• An example of SOLID probing a unique direction in parameter space. Neither the LHC, Qweak, P2, or APV have sensitivity in this region

• This requires that $2C_{1u} - C_{1d}$ is assumed to be know from the P2 experiment so that the SOLID then directly measures $2C_{2u} - C_{2d}$

Disentangling Dim-6 and Dim-8 SMEFT Operators

[Boughazel, Petriello, Wiegand]

• Another advantage of low energy PVES experiments:

The large energy of the LHC can make it difficult to disentangle the effects of dim-6 or dim-8 (and dim-6 squared) operators.

Low energy PVES will only have sensitivity to dim-6 operators providing valuable input to disentangle dim-6 vs dim-8.

Erler, Ramse	y-Musolf, Prog	. Part. Nucl. Ph	ys. 54, 351,	(2005)]

	I	1			
Beam	Process	$\overline{Q^2} \; [\text{GeV}^2]$	Combination	Result/Status	SM
SLAC	e^{-} -D DIS	1.39	$2C_{1u} - C_{1d}$	-0.90 ± 0.17	-0.7185
SLAC	e^{-} -D DIS	1.39	$2C_{2u}^{1u} - C_{2d}^{1u}$	$+0.62 \pm 0.81$	-0.0983
CERN	μ^{\pm} -C DIS	34	$0.66(2C_{2u} - C_{2d}) + \frac{2C_{3u} - C_{3d}}{2C_{3u} - C_{3d}}$	$+1.80\pm0.83$	+1.4351
CERN	μ^{\pm} -C DIS	66	$0.81(2C_{2u} - C_{2d}) + \frac{2C_{3u} - C_{3d}}{2}$	$+1.53\pm0.45$	+1.4204
Mainz	e^{-} -Be QE	0.20	$2.68C_{1u} - 0.64C_{1d} + 2.16C_{2u} - 2.00C_{2d}$	-0.94 ± 0.21	-0.8544
Bates	e^{-} -C elastic	0.0225	$C_{1u} + C_{1d}$	0.138 ± 0.034	+0.1528
Bates	e^{-} -D QE	0.1	$C_{2u} - C_{2d}$	0.015 ± 0.042	-0.0624
JLAB	e^{-} - p elastic	0.03	$2C_{1u} + C_{1d}$	approved	+0.0357
SLAC	e^{-} -D DIS	20	$2C_{1u} - C_{1d}$	to be proposed	-0.7185
SLAC	e^{-} -D DIS	20	$2C_{2u} - C_{2d}$	to be proposed	-0.0983
SLAC	e^{\pm} -D DIS	20	$2C_{3u} - C_{3d}$	to be proposed	+1.5000
	^{133}Cs APV	0	$-376C_{1u} - 422C_{1d}$	-72.69 ± 0.48	-73.16
	205 Tl APV	0	$-572C_{1u} - 658C_{1d}$	-116.6 ± 3.7	-116.8
			1		

 $2g_{AA}^{\mu u} - g_{AA}^{\mu d} + 0.81 \left(2g_{VA}^{\mu u} - g_{VA}^{\mu d}\right) = 1.45 \pm 0.41$ $2g_{AA}^{\mu u} - g_{AA}^{\mu d} + 0.66 \left(2g_{VA}^{\mu u} - g_{VA}^{\mu d}\right) = 1.70 \pm 0.79$

[Erler, Liu, Spiesberger, Zheng]

Probing the Dark Sector

• Strong evidence for dark matter through gravitational effects:

- Galactic Rotation Curves
- Gravitational Lensing
- Cosmic Microwave Background
- Large Scale Structure Surveys
- WIMP dark matter paradigm
 - Mass ~ TeV
 - Weak interaction strength couplings
 - Gives the required relic abundance
- However, so far no direct evidence for WIMP dark matter
- Perhaps dark sector has a rich structure including different species and gauge forces, just like the visible sector

Dark Photon Scenario

- Dark $U(1)_d$ gauge group
- Interacts with SM via kinetic mixing (and mass mixing)

$$\mathcal{L} \supset -\frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{m_{A'}^2}{2} A'_{\mu} A'^{\mu} + \frac{\epsilon}{2\cos\theta_W} F'_{\mu\nu} B^{\mu\nu}$$

• The mixing induces a coupling of the dark photon to the electromagnetic and weak neutral currents.

$$\mathscr{L}_{int} = -e\epsilon J^{\mu}_{em}A'_{\mu}$$

• Could help explain astrophysical data and anomalies

[Arkani-Hamed, Finkbeiner, Slatyer, Wiener, ...]

Dark Photon Scenario

Beam Dump Experiments (see talk by Marco Spreafico)

[Bjorken, Essig, Schuster, Toro]

Dark Photon Scenario: Impact on PVES

[Thomas, Wang, Williams]

$$\mathcal{L} \supset -\frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{m_{A'}^2}{2} A'_{\mu} A'^{\mu} + \frac{\epsilon}{2\cos\theta_W} F'_{\mu\nu} B^{\mu\nu}$$

• Contraints on Dark Photon parameter space will be independent of the details of the decay branching fractions of the dark photon

• For a light dark photon, the induced coupling to the weak neutral coupling is suppressed (due to a cancellation between the kinetic and mass mixing induced couplings). [Gopalakrishna, Jung, Wells; Davoudiasl, Lee, Marciano]

• Thus, we consider a heavier dark photon for a sizable coupling to the weak neutral current and a correspondingly sizable effect in PVES. [Thomas, Wang, Williams]

Dark Photon Scenario: Impact on PVES

[Thomas, Wang, Williams]

$$\mathcal{L} \supset -\frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{m_{A'}^2}{2} A'_{\mu} A'^{\mu} + \frac{\epsilon}{2\cos\theta_W} F'_{\mu\nu} B^{\mu\nu}$$

• Contraints on Dark Photon parameter space will be independent of the details of the decay branching fractions of the dark photon

• Contraints on Dark Photon parameter space will be independent of the details of the decay branching fractions of the dark photon

• The usual PVDIS asymmetry has the form:

$$A_{\rm PV}^{\rm DIS} = \frac{G_F Q^2}{4\sqrt{2}(1+Q^2/M_Z^2)\pi\alpha} \left[a_1 + \frac{1-(1-y)^2}{1+(1-y)^2}a_3\right]$$

• Including the effects of a dark photon, we get additional terms:

$$A_{\rm PV} = \frac{Q^2}{2\sin^2 2\theta_W (Q^2 + M_Z^2)} \Big[a_1^{\gamma Z} + \frac{1 - (1 - y)^2}{1 + (1 - y)^2} a_3^{\gamma Z} + \frac{Q^2 + M_Z^2}{Q^2 + M_{A_D}^2} (a_1^{\gamma A_D} + \frac{1 - (1 - y)^2}{1 + (1 - y)^2} a_3^{\gamma A_D}) \Big],$$

	0.20	
	0.15	1
ω	0.10	-

Dark Photon Scenario: Impact on PVES ~ 0.10

• Equivalent to working with the usual PVDIS formula:

$$A_{\rm PV}^{\rm DIS} = \frac{G_F Q^2}{4\sqrt{2}(1+Q^2/M_Z^2)\pi\alpha} \left[a_1 + \frac{1-(1-y)^2}{1+(1-y)^2}a_3\right]$$

• But with shifted C_{iq} couplings:

$$C_{1q} = C_{1q}^{Z} + \frac{Q^{2} + M_{Z}^{2}}{Q^{2} + M_{A_{D}}^{2}} C_{1q}^{A_{D}} = C_{1q}^{SM} (1 + R_{1q})$$

$$0.05$$

$$C_{2q} = C_{2q}^{Z} + \frac{Q^{2} + M_{Z}^{2}}{Q^{2} + M_{A_{D}}^{2}}C_{2q}^{A_{D}} = C_{2q}^{SM}(1 + R_{2q})$$

[Thomas, Wang, Williams]

40

40

0.05

0.20

0.15

Dark Photon Scenario: Shift in C_{1q} (PREX)

FIG. 1. The correction factors R_{1u} and R_{1d} at $Q^2 = 0.00616 \text{ GeV}^2$, appropriate to the PREX-II experiment. The gap on the $\epsilon - M$ plane is not accessible because of "eigenmass repulsion" associated with the Z mass.

[Thomas, Wang, Williams]

Dark Photon Scenario: Shift in C_{iq} (PVDIS)

• Dark Photon Scenario: Shift in C_{3q} (PVDIS)

///

111

1

[Thomas, Wang, Williams]

$$A_d^{e^+e^-} = -\frac{3G_F Q^2 Y}{2\sqrt{2}\pi\alpha} \frac{R_V (2g_{AA}^{eu} - g_{AA}^{ed})}{5 + 4R_C + R_S}$$

$$C_{3q} = C_{3q}^{Z} + \frac{Q^2 + M_Z^2}{Q^2 + M_{A_D}^2} C_{3q}^{A_D} = C_{3q}^{SM} (1 + R_{3q})$$

Light Dark-Z Parity Violation

[Davoudiasl, Lee, Marciano]

- An interesting scenario is that of a "light" Dark-Z.
- The standard kinetic mixing scenario:

$$\mathcal{L}_{\text{gauge}} = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} + \frac{1}{2} \frac{\varepsilon}{\cos \theta_W} B_{\mu\nu} Z_d^{\mu\nu} - \frac{1}{4} Z_{d\mu\nu} Z_d^{\mu\nu}$$

 And additional mass mixing (for example, from extended Higgs) sector) ton induce sizable dark-Z coupling to the weak neutral current:

 m_Z

$$\varepsilon_{X} \qquad M_0^2 = m_Z^2 \begin{pmatrix} 1 & -\varepsilon_Z \\ -\varepsilon_Z & m_{Z_d}^2/m_Z^2 \end{pmatrix}$$
$$\varepsilon_Z = \frac{m_{Z_d}}{\delta}$$

f

$$f \xrightarrow{\varepsilon_Z} \overline{f} \xrightarrow{\varepsilon_Z} Z'$$
 $\sim \kappa_{\text{KIN}} - 4 \xrightarrow{\omega_{\mu\nu}} B^{\mu}$

It may interact with DM, but
 Dark-Z couples to the electromagnetic and neutral current coupling:
 SM particles have zero charges

$$\mathcal{L}_{\text{int}} = \left(-e\varepsilon J_{\mu}^{em} - \frac{g}{2\cos\theta_W}\varepsilon_Z J_{\mu}^{NC}\right) Z_d^{\mu}$$
$$= -\frac{1}{4}B_{\mu\nu}B^{\mu\nu} + \frac{1}{2}\frac{\varepsilon}{\cos\theta_W}B_{\mu\nu}Z'^{\mu\nu} - \frac{1}{4}Z'_{\mu\nu}Z'^{\mu\nu} \qquad \qquad \mathcal{L}_{\text{int}} = -\varepsilon eJ_{em}^{\mu}Z'_{\mu}$$

Log₁₀ dignt Dark-Z Parity Violation

[Davoudiasl, Lee, Marciano]

• Effective change in presence of dark-Z for parity violating asymmetries:

$$G_F \to \rho_d G_F$$

 $\sin^2 \theta_W \to \kappa_d \sin^2 \theta_W$

$$\rho_d = 1 + \delta^2 \frac{m_{Z_d}^2}{Q^2 + m_{Z_d}^2}$$
$$\kappa_d = 1 - \frac{\varepsilon}{\varepsilon_Z} \delta^2 \frac{\cos \theta_W}{\sin \theta_W} \frac{m_{Z_d}^2}{Q^2 + m_{Z_d}^2}$$

Charged Lepton Flavor Violation ($e^+ \rightarrow \mu^+$)

 $e^+ + N \to \mu^+ + X$

Fig. 3. The SoLID J/Ψ configuration with muon detectors [28]. Other sub-detectors are labeled.

□ Low center of mass energy but high luminosity:

 $\sqrt{s} \sim 4.5 \text{ GeV}$ $\mathcal{L} \sim 10^{36} \text{ - } 10^{39} \text{ cm}^{-2} \text{ s}^{-1}$

Detectors should be equipped with muon detectors and a good tracker. Proposed SoLID spectrometer meets these requirements

- □ High luminosity will allow for substantial improvement over HERA limits on CLFV.
- □ For $\mathcal{L} \sim 10^{38} \ cm^{-2} s^{-1}$ one can expect two to three orders of magnitude improvement over HERA.

Charged Lepton Flavor Violation via Leptoquarks

Convenient to study CLFV in Leptoquark framework which mediates CLFV at tree-level:

14 LQ states. Positron beam can help disentangle F=0 and |F|=2 LQ states. Polarized beams can help distinguish between left-handed and right-handed LQs.

Туре	J	F	Q	ep dominant process		Coupling	Branching ratio β_{ℓ}	Туре	J	F	Q	ep dominant	process	Coupling	Branching ratio β_{ℓ}
S_0^L	0	2	-1/3	$e_{I} u_{L} \rightarrow \begin{cases} \\ \end{array}$	$\ell^- u$	λ_L	1/2	V_0^L	1	0	+2/3	$e_{P}^{+}d_{L} \rightarrow \begin{cases} e_{P}^{+}d_{L} & \rightarrow \end{cases}$	$\ell^+ d$	λ_L	1/2
0					$ u_\ell d$	$-\lambda_L$	1/2					$\bar{ u}_\ell u$	λ_L	1/2	
S_0^R	0	2	-1/3	$e_R^- u_R \rightarrow$	$\ell^- u$	λ_R	1	V_0^R	1	0	+2/3	$e_L^+ d_R \rightarrow$	$\ell^+ d$	λ_R	1
$ ilde{S}^R_0$	0	2	-4/3	$e_R^- d_R \rightarrow$	$\ell^- d$	λ_R	1	\tilde{V}_0^R	1	0	+5/3	$e_L^+ u_R \rightarrow$	$\ell^+ u$	λ_R	1
			2 -1/3	∫	$\ell^- u$	$-\lambda_L$	1/2		1	0	+2/3	_ _	$\ell^+ d$	$-\lambda_L$	1/2
S_1^L	0	2		$ e_L u_L \rightarrow \{$	$\nu_\ell d$	$-\lambda_L$	1/2					$e_{\dot{R}}a_{L} \rightarrow \{$	$\bar{\nu}_{\ell} u$	λ_L	1/2
			-4/3	$e_L^- d_L \rightarrow$	$\ell^- d$	$-\sqrt{2}\lambda_L$	1				+5/3	$e_R^+ u_L \rightarrow$	$\ell^+ u$	$\sqrt{2}\lambda_L$	1
$V_{1/2}^{L}$	1	2	-4/3	$e_L^- d_R \rightarrow$	$\ell^- d$	λ_L	1	$S_{1/2}^{L}$	0	0	+5/3	$e_R^+ u_R \rightarrow$	$\ell^+ u$	λ_L	1
V^R	$V^R_{1/2}$ 1	2	-1/3	$e_R^- u_L \rightarrow$	$\ell^- u$	λ_R	1	c R	0	0	+2/3	$e_L^+ d_L \rightarrow$	$\ell^+ d$	$-\lambda_R$	1
V 1/2		2	-4/3	$e_R^- d_L \rightarrow$	$\ell^- d$	λ_R	1	¹ /2	0		+5/3	$e_L^+ u_L \rightarrow$	$\ell^+ u$	λ_R	1
$\tilde{V}_{1/2}^L$	1	2	-1/3	$e_L^- u_R \rightarrow$	$\ell^- u$	λ_L	1	$\tilde{S}_{1/2}^{L}$	0	0	+2/3	$e_R^+ d_R \rightarrow$	$\ell^+ d$	λ_L	1

□ HERA put limits on the ratio of the product LQ couplings and the LQ mass squared:

Define "z" such that z=1 corresponds to the HERA limit and z< 1 an improvement over the HERA limit:

Fig. 5. The cross section for $e^+N \to \mu^+X$ with center of mass energy $\sqrt{s} = 4.5$ GeV, via exchange of the F=0 scalar LQ, $S_{1/2}^L$, as a function of the ratio z defined in Eq. (9). The red, black, magenta, and blue solid lines correspond to the choices $(\alpha, \beta) = \{11, 12, 21, 22\}$ in Eq. (6) with all other terms set to zero. An integrated luminosity of $\mathcal{L} \sim 5 \times 10^6 \text{fb}^{-1}$ will allow sensitivity to cross sections as small as $\sigma \sim 0.2 \times 10^{-6}$ fb (horizontal dashed line).

Fig. 6. The positron beam polarization dependence of cross section for $e^+N \rightarrow \mu^+X$ with center of mass energy $\sqrt{s} = 4.5$ GeV, via exchange of the F=0 scalar LQ, $S_{1/2}^L$, as a function of the ratio z defined in Eq. (9). The solid black line corresponds to the cross section for an unpolarized positron beam ($P_e = 0$). The gray band corresponds to the linear variation of the cross section with beam polarization, as shown in Eq. (11). The size of the band corresponds to a variation of the beam polarization between [-80%,80%].

Conclusions

• PVDIS at JLAB can provide unique and complementary information to constrain new physics

• It can provide input for the global SMEFT analysis by lifting flat directions and disentangling dim-6 and dim-8 operators

- Can constrain the parameter space of Dark photons/Z
- Additionally, could improve on HERA limits for Charged Lepton Violation $(e \rightarrow \mu)$