Deep Exclusive Meson Production in Hall C with Upgraded JLab Beam

2

Garth Huber, huberg@uregina.ca

DEMP Opportunities in Hall C

- 1) Determine the Pion Form Factor to high Q^2 :
- I) Determine the Line Line is a set of the proton $\mathcal{M}_{\mathcal{M}}^{\vec{v}}$ Indirectly measure F_{π} using the "pion cloud" of the proton $\mathcal{M}_{\mathcal{M}}^{\vec{v}}$ via p(e,e' π +)n $|p\rangle = |p\rangle_0 + |n\pi^+\rangle + \dots$
- The pion form factor is a key QCD observable
- Extension of studies to Kaon Form Factor expected to reveal insights on hadronic mass generation via DCSB

2) Study the Hard-Soft Factorization Regime:

- Need to determine region of validity of hardexclusive reaction meachanism, as GPDs can only be extracted where factorization applies
- Separated $p(e,e'\pi^+/K^+)$ cross sections vs. Q^2 at fixed x to investigate reaction mechanism towards 3D imaging studies
- Extension of studies to u–channel p(e,e'p)ω can reveal hard-soft factorization at backward angle

Charged Pion Form Factor

The pion is attractive as a QCD laboratory:

Simple, 2 quark system

- The pion is the "positronium atom" of QCD, its form factor is a test case for most model calculations
- The important question to answer is: What is the structure of the π^+ at all Q^2 ?

A program of study unique to Jefferson Lab Hall C (until the completion of the EIC) Garth Huber, huberg@uregina.ca

Measurement of π^+ Form Factor – Larger Q^2

At larger Q^2 , F_{π} must be measured indirectly using the "pion cloud" of the proton via pion electroproduction $p(e,e'\pi^+)n$

$$\left| p \right\rangle = \left| p \right\rangle_{0} + \left| n \pi^{+} \right\rangle + \dots$$

- At small –*t*, the pion pole process dominates the longitudinal cross section, σ_L
- In Born term model, F_{π}^{2} appears as,

$$\frac{d\sigma_L}{dt} \propto \frac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)$$

Drawbacks of this technique 1.Isolating σ_L experimentally challenging 2.Theoretical uncertainty in form factor extraction.

way University

- **L**-T separation required to separate σ_L from σ_T
- Need to take data at smallest available -t, so σ_L has maximum contribution from the π^+ pole

HMS and SHMS during Data Taking

AL

Extract $F_{\pi}(Q^2)$ from JLab σ_L data

Model incorporates π^+ production mechanism and spectator neutron effects:

VGL Regge Model:

• Feynman propagator $\left(\frac{1}{t-m^{-2}}\right)$

replaced by π and ρ Regge propagators.

- Represents the exchange of a series of particles, compared to a single particle.
- Free parameters: Λ_{π} , Λ_{ρ} (trajectory cutoff)

[Vanderhaeghen, Guidal, Laget, PRC 57(1998)1454]

• At small -t, σ_l only sensitive to F_{π}

$$F_{\pi} = \frac{1}{1 + Q^2 / \Lambda_{\pi}^2}$$

Fit to σ_L to model gives F_{π} at each Q^2

Error bars indicate statistical and random (pt-pt) systematic uncertainties in guadrature.

Yellow band indicates the correlated (scale) and partly correlated (t-corr) systematic uncertainties.

 $\Lambda_{\pi}^2 = 0.513, 0.491 \text{ GeV}^2, \Lambda_{\rho}^2 = 1.7 \text{ GeV}^2.$

Current and Projected F_{π} Data

SHMS+HMS will allow measurement of F_{π} to much higher Q^2 .

No other facility worldwide can perform this measurement.

The pion form factor is the clearest test case for studies of QCD's transition from nonperturbative to perturbative regions.

E12–19–006: D. Gaskell, T. Horn and G. Huber, spokespersons

Strong Endorsement in many Reviews

Report to PAC18, 12 GeV Session: Measuring F_{π} at Higher Q^2

G.M. Huber, H.P. Blok, D.J. Mack on behalf of the Exclusive Reactions Working Group July 6, 2000

 F_{π} Rated "Early High Impact" by PAC35 in 2010 \Box F_{π} first proposed to JLab PAC in 2000!

 F_{π} endorsed by NSAC in 2002, as one of the key motivations for the 12 GeV Upgrade

 F_{π} endorsed again by NSAC in 2015, "as one of the flagship goals of the JLab 12 GeV Upgrade"

PAC47 (2019) Theory Report: *"Since the proposals were originally reviewed, the physics motivations for both studies have only increased." "A" rating reaffirmed by PAC47*

Opportunities with higher E_{beam} & Hall C

- 7.2 GeV/c HMS & 11.0 GeV/c SHMS allow a lot of kinematic flexibility, with no upgrades
 - Experiment could be done as soon as beam energy is available!
 - Maximum beam energy and higher Q² reach constrained by sum of HMS+SHMS maximum momenta
 - Investigated possible septum magnet to improve forward angle capability of HMS+SHMS, but this did not help

	10.6 GeV	18.0 GeV	Improvement in δ <i>F_π/F_π</i>	
Q ² =8.5	Δε=0.22	Δε=0.40	16.8%→8.0%	
Q ² =10.0	New high quality F_{π} data			
Q ² =11.5	Larger F_{π} extraction uncertainty due to higher -t _{min}			

p(e,e'π ⁺)n Kinematics					
E _{beam}	θ _{HMS} (e')	P _{HMS} (e')	$ heta_{ ext{SHMS}} \ (\pi^{\scriptscriptstyle +})$	${\mathsf P}_{{ m SHMS}}\ (\pi^{\scriptscriptstyle +})$	Time FOM
Q2=	$Q^2=8.5$ W=3.64 $-t_{min}=0.24$ $\Delta\epsilon=0.40$				
13.0	34.30	1.88	5.29	10.99	64.7
18.0	15.05	6.88	8.94	10.99	2.2
$Q^2=10.0$ W=3.44 $-t_{min}=0.37$ $\Delta \epsilon=0.40$					
13.0	37.78	1.83	5.56	10.97	122.7
18.0	16.39	6.83	9.57	10.97	4.5
Q^2 =11.5 <i>W</i> =3.24 - t_{min} =0.54 $\Delta \epsilon$ =0.29					
14.0	31.73	2.75	7.06	10.96	82.4
18.0	17.70	6.75	10.05	10.96	8.8

 Since quality L/T-separations are impossible at EIC (can't access ε<0.95) this extension of L/Tseparated data considerably increases F_π data set overlap between JLab and EIC

The Charged Kaon – 2nd QCD test case

Hadron Mass Budget

In hard scattering limit, pQCD predicts π^+ , K^+ form factors will behave similarly

Important to compare magnitudes and Q²—dependences of both form factors

Chiral Limit Mass
Higgs Boson Current Mass
DCSB Mass Generation + Higgs feedback
Ref: Craig Roberts (2021)

- Proton mass large in absence of quark couplings to Higgs boson (chiral limit). Conversely, K and π are massless in chiral limit (i.e. they are Goldstone bosons).
- The mass budgets of these crucially important particles demand interpretation.
- Equations of QCD stress that any explanation of the proton's mass is incomplete, unless it simultaneously explains the light masses of QCD's Goldstone bosons, the π and K.
- Understanding π^+ and K^+ form factors over broad Q^2 range is central to this puzzle.

Projected Uncertainties for K⁺ Form Factor

First measurement of F_K well above the resonance region.

- Measure form factor to Q²=3 GeV² with good overlap with elastic scattering data.
 - Limited by –*t*<0.2 GeV² requirement to minimize non–pole contributions.
 - Data will provide an important second qq system for theoretical models, this time involving a strange quark.

Opportunities with higher E_{beam} & Hall C

- 7.2 GeV/c HMS & 11.0 GeV/c SHMS allow a lot of kinematic flexibility
- Maximum beam energy and higher Q² reach constrained by sum of HMS+SHMS maximum momenta
- Success depends on good K⁺/π⁺ separation in SHMS at high momenta, likely requires a modest aerogel detector upgrade
- Counting rates are roughly 10x lower than pion form factor measurement

	10.6 GeV	16.0 GeV	Improvement in δ <i>F_κ/F_κ</i>	
Q ² =5.5	Δε=0.33	Δε=0.40	17.9%→10.7%	
Q ² =7.0	New high quality F_{κ} data			
Q ² =9.0	Larger <i>F_K</i> extraction uncertainty due to higher -t _{min}			

p(e,e'K ⁺)Λ Kinematics					
E_{beam}	θ _{HMS} (e')	P _{HMS} (e')	$ heta_{ ext{SHMS}} \ (\pi^{\scriptscriptstyle +})$	$P_{SHMS}\ (\pi^{\scriptscriptstyle +})$	Time FOM
Q ² =	5.5 W	=3.56 ·	- <i>t_{min}</i> =0.	32 Δε=	0.40
11.0	30.69	1.79	5.50	8.84	746
16.0	12.92	6.79	9.18	8.84	150
Q ² =	$Q^2=7.0$ W=3.90 $-t_{min}=0.33$ $\Delta\epsilon=0.29$				
14.0	25.16	2.64	5.51	10.98	620
18.0	13.91	6.64	7.85	10.98	192
Q ² =9.0 W=3.66 $-t_{min}$ =0.54 $\Delta \epsilon$ =0.30					
14.0	29.17	2.54	5.98	10.97	964
18.0	15.90	6.54	8.69	10.97	350

- *F_K* feasibility studies at EIC are ongoing, but we already know that such measurements there are exceptionally complex.
- JLab measurements likely a complement to those at EicC.

Hard–Soft Factorization in DEMP

- To access physics contained in GPDs, one is limited to the kinematic regime where hard-soft factorization applies
 - No single criterion for the applicability, but tests of necessary conditions can provide evidence that the Q² scaling regime has been reached
- One of the most stringent tests of factorization is the Q² dependence of the π/K electroproduction cross sections
 - σ_L scales to leading order as Q⁻⁶
 - σ_T does not, expectation of Q⁻⁸
 - As Q² becomes large: σ_L >> σ_T

- Is onset of scaling different for kaons than pions?
- K^+ and π^+ together provide quasi model-independent study

DEMP *Q*^{-*n*} Hard–Soft Factorization Tests

	p(e,e	'π ⁺)n			
Subjected Errors $-1/Q^{6}$ $-1/Q^{600.4}$ $1/Q^{4}$ $1/Q^{4}$ $1/Q^{6}$ Fit: $1/Q^{n}$ $x_{B}=0.39$ $1/Q^{8}$ $1/Q^{8}$ $y_{B}=0.39$ $1/Q^{8}$ $1/Q^{6}$ $y_{B}=0.39$ $1/Q^{8}$					
X	Q ² (GeV ²)	W(GeV)	−t _{min} (GeV²		
0.31	1.45–3.65	2.02-3.07	0.12		
	1.45–6.5	2.02-3.89			
0.39	2.12-6.0	2.05-3.19	0.21		
	2.12-8.2	2.05-3.67			
0.55	3.85-8.5	2.02-2.79	0.55		
	3.85–11.5	2.02-3.23]		

x	Q ² (GeV ²)	W (GeV)	<i>−t_{min}</i> (GeV²)
0.25	1.7–3.5	2.45-3.37	0.20
	1.7–5.5	2.45-4.05	
0.40	3.0–5.5	2.32-3.02	0.50
	3.0–8.7	2.32-3.70	

Q^{-*n*} scaling test range nearly doubles with 18 GeV beam and HMS+SHMS

Hard–Soft Factorization in Backward Exclusive π^0

Summary

- The existing HMS+SHMS and 18 GeV beam enable important Deep Exclusive Meson Production (DEMP) measurements which build upon the 11 GeV measurements and set the bridge between JLab and EIC
- Hall C is optimized for quality L/T–separations, which are not possible at EIC due to difficulty to access $\varepsilon < 0.9$

Discussed measurements:

- Pion form factor to Q²=10 GeV² with small errors, and to 11.5 with larger uncertainties
- Kaon form factor to Q²=7.0 GeV² with small errors, and to 9.0 with larger uncertainties
- Hard–Soft Q⁻ⁿ factorization tests with $p(e,e'\pi^+)n$ and $p(e,e'K^+)\Lambda$
- Studies of backward angle Q⁻ⁿ factorization via u–channel p(e,e'p)π⁰ and p(e,e'p)ω
- Higher Q² reach requires replacement of HMS with a new spectrometer. I wanted to concentrate on what science is possible with "cost-effective investment".