SIDIS in Hall C at 20+ GeV

The Next Generation of 3D Imaging July 7-8

1

SHMS and HMS in Experimental Hall C

Excellent control of point-to-point systematic
uncertainties required for precise L-T separations
→ Ideally suited for focusing spectrometers
→ One of the drivers for SHMS design

Spectrometer properties

HMS: Electron arm <u>Nominal capabilities:</u> $d\Omega \sim 6 \text{ msr}, P_0 = 0.5 - 7 \text{ GeV/c}$ $\theta_0 = 10.5 \text{ to } 80 \text{ degrees}$ e ID via calorimeter and gas Cerenkov

SHMS: Pion arm <u>Nominal capabilities:</u> $d\Omega \sim 4 \text{ msr}, P_0 = 1 - 11 \text{ GeV/c}$ $\theta_0 = 5.5 \text{ to } 40 \text{ degrees}$ $\pi:K:p$ separation via heavy gas Cerenkov and aerogel detectors

Identical acceptance for positive and negative polarity
 → Precision measurement of charged meson ratios

Hall C 12 GeV SIDIS Program – Cross Sections and Ratios

Precise cross section measurements with magnetic focusing spectrometers (HMS/SHMS)

- Demonstrate understanding of reaction mechanism, test factorization
- → Able to carry out precise comparisons of charge states, $\pi + /\pi$ -
- → Complete ϕ dependence at small P_T , access to large P_T at fixed ϕ

$$\boldsymbol{\sigma} = \sum_{q} e_{q}^{2} \boldsymbol{f}(\boldsymbol{x}) \otimes \boldsymbol{D}(\boldsymbol{z})$$

E12-09-017 proposal 3

Hall C 12 GeV SIDIS Program – L-T Separations

R = σ_L/σ_T in SIDIS (ep \rightarrow e' $\pi^{+/-}X$)

0.5 0.25 ¥ 0 0.2 0.4 0.6 0.8 Z 0.5 0.25 ¥ 0 5 3 2 4 Q^2 0.4 2 0.2 0 0.2 0.4 0.6 0.8 0 P_T^2

$$\boldsymbol{\sigma} = \sum_{q} e_{q}^{2} \boldsymbol{f}(\boldsymbol{x}) \otimes \boldsymbol{D}(\boldsymbol{z})$$

E12-06-104: Measurement of the Ratio $R=\sigma_L/\sigma_T$ in Semi-Inclusive Deep-Inelastic Scattering

SHMS/HMS will allow precise L-T separations \rightarrow Does $R_{DIS} = R_{SIDIS}$?

12 GeV Hall C SIDIS Program – HMS+SHMS

Accurate cross sections for validation of SIDIS factorization framework and for L/T separations

Courtesy R. Ent

12 GeV Hall C SIDIS Program – HMS+SHMS+NPS

x = 0.7

10

Calorimeter + sweeper magnet adds capability to detect neutral particles (γ and π^0)

→ In addition to broadening SIDIS program, enables DVCS, DVMP (π^0), WACS measurements

Courtesy R. Ent

HMS-SHMS P_T / ϕ acceptance

Simulated, from P_T -SIDIS experiment (11 GeV)

Jefferson Lab

Full ϕ coverage over limited P_T range \rightarrow larger P_T covers narrow range in ϕ

11 GeV SIDIS Preliminary Analysis

22 GeV Hall C SIDIS Phase Space – HMS+SHMS

Assumptions: HMS + SHMS minimum angle constraints unchanged → Increase in HMS maximum momentum (higher field magnets) → Smaller HMS angle may be possible, but would require special bender like SHMS

Measurements at 22 GeV: Parallel Kinematics

HMS+SHMS has excellent momentum/angle resolution

 \rightarrow Complete ϕ coverage at low P_T

x	Q2	z	
0.26	7	0.4-0.7	W' > 2 GeV for all settings
0.37	10	0.4-0.7	
0.38	12	0.36-0.64	
0.51	17	0.33-0.58	~45 days assuming 70 μA
0.54	15	0.4-0.7	

No modifications to either HMS or SHMS needed for these measurements

Measurements at 22 GeV: Large P_T

Access to large P_T by rotating SHMS away from q-vector

 \rightarrow Interference term contribution difficult to constrain

This x/Q² assumes upgraded HMS

11

 \rightarrow Complicates possible L-T separations

$$\frac{d\sigma}{dxdydzdp_T^2d\phi} = \frac{\alpha^2}{xyQ^2} \frac{y^2}{2(1-\epsilon)} \left[F_T + \epsilon F_L + \sqrt{2\epsilon(1+\epsilon)}\cos\phi F_{LT} + \epsilon\cos 2\phi F_{TT}\right]$$
SHMS +12
degrees from q-
vector
$$\int_{-\frac{1}{2.5}} \frac{1}{2} \int_{-\frac{1}{2}} \frac{1}{1-\frac{1}{2.5}} \frac{1}{2} \int_{-\frac{1}{2}} \frac{1}{2} \int_{-\frac{1}{2}}$$

Hall C Program at Higher Energy

- Higher energy capabilities similar to 12 GeV program
 - Precision cross sections
 - L/T separations
 - Low rate processes \rightarrow large P_T
 - Precision ratios (π +/ π -, and more)
 - Excellent π /K/p separation
 - Neutral particle capabilities w/calorimeter (NPS)
- Upgraded equipment
 - Higher momentum capability for electron arm (HMS) would be beneficial
 - Smaller angle capability?

