

³He target at 20+ GeV energies

Vlad Khachatryan for the SoLID collaboration

Physics Department, Duke University

The Next Generation of 3D Imaging, 7-8 July 2022

Let's start by outlining the following TMDs that describe confined motion inside the nucleon

Transversity

$$h_{1T} = \mathbf{\mathbf{1}} - \mathbf{\mathbf{1}}$$

$$\mathbf{S}_{T} \cdot \mathbf{S}_{q}$$

- $h_{1T}(h_1) = g_1$ (no relativity)
- $h_{1T} \longrightarrow$ tensor charge (confronting lattice QCD calculations)
- Connected to nucleon beta decay and electric dipole moment

• Interference between components with quark orbital angular momentum (OAM) difference of 2 units (i.e., s-d, p-p) (model dependence)

Signature for relativistic effect

These TMDs will be measured by the **SOLID SIDIS 12 GeV program**

Experiments: E12-10-006 (with trans. pol. ³He ("neutron") E12-11-108 (with trans. pol. NH₃ ("proton")

Relevant Vectors

 S_{T} : Nucleon Spin **s**_a: Quark Spin **k**₁: Quark Transverse Momentum **P:** Virtual photon 3-momentum (defines z-direction)

Pretzelosity

$$\mathbf{S}_{T} \cdot [\mathbf{k}_{\perp} \mathbf{k}_{\perp}] \cdot \mathbf{S}_{qT}$$

$\mathbf{S}_{_{T}}\cdot\mathbf{k}_{_{\perp}} imes\mathbf{P}$

 Nucleon spin - quark orbital angular momentum (OAM) correlation

> Zero if no OAM (model dependence)

<u>Sivers</u>

Separation of the transverse Collins / Sivers / Pretzelosity SSAs

Corresponding SIDIS SSAs depend on 4-D variables (x, Q², z, P_T);

Small asymmetries demand large acceptance + high luminosity allowing for measuring asymmetries in 4-D binning with precision!

$$A_{UT}(\phi_h, \phi_S) = \frac{1}{P_{t,pol}} \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}}$$

$$= A_{UT}^{Collins} \sin(\phi_h + \phi_S) + A_{UT}^{Pretzelosi}$$

$$A_{UT}^{Collins} \propto \langle \sin(\phi_h + \phi_S) \rangle_{UT} \propto h$$

$$A_{UT}^{Pretzelosity} \propto \langle \sin(3\phi_h - \phi_S) \rangle_{UT}$$

$$A_{UT}^{Sivers} \propto \langle \sin(\phi_h - \phi_S) \rangle_{UT} \propto h$$

Q^2 vs. X_{bj} Phase - space examples obtained with the ³He target at various beam energies:

Just an example of the SOLID 12 GeV pseudo-data compared to that at EIC kinematics

- > SoLID SIDIS projections of A_{UT} in various 4-D bins at 11 / 8.8 GeV beam energies from trans. pol ³He target
- Projections at EIC kinematics for the same observable at 29 GeV center-of-mass energy
- \succ SSA scale and uncertainties shown on the right-side axis of the figures
- \succ SoLID and EIC projections synergistic towards each other, by covering different x and Q² ranges

A_{UT} non-separated asymmetry of π^+ particles

(GeV/c)
(GeV/c
(GeV/
(GeV
(Oe)
9
· · · · ·
^⊢

(GeV/c) ₄⊢

(GeV/c) ⊾

₫

$$\boldsymbol{g}_T^q = \int_0^1 [\boldsymbol{h}_1^q]$$

g_T flavor

<u>u / d</u>

u / d

Tensor Charge projections

World data vs. SoLID projections at 24 GeV

shown in the figure and table from ³He target at 11 / 8.8 GeV energies

separation	World data	SoLID 12 GeV	SoLID 24
value	0.548 / -0.382	0.547 / -0.376	0.547 / -0
error	0.112 / 0.177	0.016 / 0.012	0.016 / (

Let's do the following exercise when the SoLID ³He acceptance is bypassed

> Bypass the acceptance in the range of $\theta = 8^{\circ} - 30^{\circ}$

> Bypass the acceptance in the range of $\theta = 5^{\circ} - 27^{\circ}$

10

SoLID³**He:** • 24 GeV - 100 days • 12 GeV - 69 days

- \succ Produced the results with bypassed acceptance at 24 GeV from ³He and NH₃ targets
- Produced the results with bypassed acceptance at **20 GeV** from ³He and NH₃ targets
- Produced the results with bypassed acceptance at 11 / 8.8 GeV from ³He and NH₃ targets

Total rate ratio

SoLID ³He

12 GeV,	$\theta_{\rm min} = 5^{\circ}/\theta_{\rm min} = 8^{\circ}$	20 GeV,	6
	1.63		
SoLID NH ₃			
12 GeV,	$\theta_{\min} = 5^{\circ}/\theta_{\min} = 8^{\circ}$	20 GeV,	(
	1.19		

 \succ Take the ratio ($\theta_{min} = 5^{\circ}$ to $\theta_{min} = 8^{\circ}$) of the total rate in the entire 4-D binning, as shown below

$$\theta_{\min} = 5^{\circ}/\theta_{\min} = 8^{\circ}$$
 24 GeV, $\theta_{\min} = 5^{\circ}/\theta_{\min} = 8^{\circ}$
6.77 8.93

$$\theta_{\min} = 5^{\circ}/\theta_{\min} = 8^{\circ}$$
 24 GeV, $\theta_{\min} = 5^{\circ}/\theta_{\min} = 8^{\circ}$
3.67 4.5

Things to do next for 20+ GeV by the SoLID collaboration

- For the SIDIS pions, get also pseudo-data with the NH_3 target acceptance; Ο combine with the ³He pseudo-data to update the results on the Collins and Sivers SSAs
- Perform similar studies for the \bigcirc
 - 1) SIDIS kaons;
 - 2) g_{T} measurement (inclusive);
 - 3) SIDIS worm-gear TMD g_{1T} ;
 - 4) high- p_{T} inclusive pions.
- Make comparisons with observables at EIC kinematics Ο

