WHY 20+ GEV For Sidis/thds?

Alessandro Bacchetta

TRANSVERSE MOMENTUM DISTRIBUTIONS

TMDs describe the distribution of partons in three dimensions in momentum space. They also have to be extracted through global fits.

WITH SPIN

3D MOMENTUM DISTRIBUTIONS FROM DATA

TMD TABLE

TMDs in black survive integration over transverse momentumTMDs in red are time-reversal oddMulders-Tangerman, NPB 461 (96)Boer-Mulders, PRD 57 (98)

TMD TABLE: TWIST 3

Twist-3 TMDs

Mulders-Tangerman, NPB 461 (96) Boer-Mulders, PRD 57 (98) Bacchetta, Mulders, Pijlman, hep-ph/0405154 Goeke, Metz, Schlegel, hep-ph/0504130

SEMI-INCLUSIVE DIS

- Q = photon virtuality
- M = hadron mass

 $P_{h\perp} = \text{hadron transverse momentum} = P_{hT} \qquad q_T^2 \approx P_{h\perp}^2/z^2$

STRUCTURE FUNCTIONS

AB, Diehl, Goeke, Metz, Mulders, Schlegel, JHEP093 (07)

$$\begin{split} \frac{d\sigma}{dx\,dy\,d\phi_{S}\,dz\,d\phi_{h}\,dP_{h\perp}^{2}} \\ &= \frac{\alpha^{2}}{x\,y\,Q^{2}}\frac{y^{2}}{2(1-\varepsilon)} \left\{ F_{UU,T} + \varepsilon\,F_{UU,L} + \sqrt{2\,\varepsilon(1+\varepsilon)}\,\cos\phi_{h}\,F_{UU}^{\cos\phi_{h}} + \varepsilon\,\cos(2\phi_{h})\,F_{UU}^{\cos\,2\phi_{h}} \right. \\ &+ \lambda_{e}\,\sqrt{2\,\varepsilon(1-\varepsilon)}\,\sin\phi_{h}\,F_{LU}^{\sin\phi_{h}} + S_{L}\left[\sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin\phi_{h}\,F_{UL}^{\sin\phi_{h}} + \varepsilon\,\sin(2\phi_{h})\,F_{UL}^{\sin\,2\phi_{h}}\right] \\ &+ S_{L}\,\lambda_{e}\left[\sqrt{1-\varepsilon^{2}}\,F_{LL} + \sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos\phi_{h}\,F_{LL}^{\cos\phi_{h}}\right] \\ &+ S_{T}\left[\sin(\phi_{h} - \phi_{S})\left(F_{UT,T}^{\sin(\phi_{h} - \phi_{S})} + \varepsilon\,F_{UT,L}^{\sin(\phi_{h} - \phi_{S})}\right) + \varepsilon\,\sin(\phi_{h} + \phi_{S})\,F_{UT}^{\sin(\phi_{h} + \phi_{S})} \\ &+ \varepsilon\,\sin(3\phi_{h} - \phi_{S})\,F_{UT}^{\sin(3\phi_{h} - \phi_{S})} + \sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin\phi_{S}\,F_{UT}^{\sin\phi_{S}} \\ &+ \sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin(2\phi_{h} - \phi_{S})\,F_{UT}^{\sin(2\phi_{h} - \phi_{S})}\right] + S_{T}\lambda_{e}\left[\sqrt{1-\varepsilon^{2}}\,\cos(\phi_{h} - \phi_{S})\,F_{LT}^{\cos(\phi_{h} - \phi_{S})}\right] \right\} \end{split}$$

STRUCTURE FUNCTIONS' REFACTORS

Harut Avakian, talk at Transversity 2022

LIST OF STRUCTURE FUNCTIONS

Not all of them are easy to access at EIC due to: x-range, twist, evolution, prefactors

Examples:

probably high-x effect, probably suppressed by evolution, "bad" prefactor

probably high-x effect, twist-3, "bad" prefactor

- Some functions won't be easily accessible at EIC and JLab might be a unique opportunity to look at them
- Even for the functions that might be accessible at the EIC, if we don't measure them BEFORE the EIC starts, most probably will be neglected at the EIC (lack of expertise, lower priority...)

DETAILS ABOUT TMD ANALYSIS

TMDS IN SEMI-INCLUSIVE DIS

TMDS IN SEMI-INCLUSIVE DIS

TMD STRUCTURE

$$\hat{f}_{1}^{a}(x, |\boldsymbol{b}_{T}|; \boldsymbol{\mu}, \boldsymbol{\zeta}) = \int d^{2}\boldsymbol{k}_{\perp} e^{i\boldsymbol{b}_{T}\cdot\boldsymbol{k}_{\perp}} f_{1}^{a}(x, \boldsymbol{k}_{\perp}^{2}; \boldsymbol{\mu}, \boldsymbol{\zeta})$$

$$perturbative Sudakov form factor$$

$$\hat{f}_{1}^{a}(x, b_{T}^{2}; \boldsymbol{\mu}_{f}, \boldsymbol{\zeta}_{f}) = [C \otimes f_{1}](x, \boldsymbol{\mu}_{b_{*}}) e^{\int_{\boldsymbol{\mu}_{b_{*}}}^{\boldsymbol{\mu}_{f}} \frac{d\boldsymbol{\mu}}{\boldsymbol{\mu}} \left(\gamma_{F} - \gamma_{K} \ln \frac{\sqrt{\zeta_{f}}}{\boldsymbol{\mu}_{b}}\right) \left(\frac{\sqrt{\zeta_{f}}}{\boldsymbol{\mu}_{b_{*}}}\right)^{K_{\text{resum}} + g_{K}} f_{1NP}(x, b_{T}^{2}; \boldsymbol{\zeta}_{f}, Q_{0})$$

$$\mu_{b} = \frac{2e^{-\gamma_{E}}}{b_{*}} \quad \text{collinear PDF}$$

$$matching \text{ coefficients} (perturbative) \quad \text{collins-Soper kernel} (perturbative) \quad \text{nonperturbative part of TMD}$$

TMD GLOBAL FITS

	Accuracy	HERMES	COMPASS	DY fixed target	DY collider	N of points	χ^2/N_{points}
Pavia 2017 arXiv:1703.10157	NLL	~	~	~	•	8059	1.55
SV 2019 <mark>arXiv:1912.06532</mark>	N ³ LL ⁻	•	~	~	•	1039	1.06
MAP22 arXiv:2206.07598	N ³ LL ⁻	•	~	~	~	2031	1.06

MAP22 FUNCTIONAL FORM

$$f_{1NP}(x, b_T^2) \propto \text{F.T. of} \left(e^{-\frac{k_T^2}{g_1}} + \lambda^2 k_T^2 e^{-\frac{k_T^2}{g_{1B}}} + \lambda_2^2 e^{-\frac{k_T^2}{g_{1C}}} \right)$$

$$g_1(x) = N_1 \frac{(1-x)^{\alpha} x^{\sigma}}{(1-\hat{x})^{\alpha} \hat{x}^{\sigma}}$$

$$g_K(b_T^2) = -\frac{g_2^2}{2}b_T^2$$

11 parameters for TMD PDF + 1 for NP evolution +9 for FF = 21 free parameters

MAP22 GOODNESS OF FIT

Data set	$N_{\rm dat}$	$\chi_D^2/N_{\rm dat}$	$\chi_{\lambda}^2/N_{\rm dat}$	$\chi_0^2/N_{\rm dat}$			
Tevatron total	71	0.87	0.06	0.93			
LHCb total	21	1.15	0.3	1.45			
ATLAS total	72	4.56	0.48	5.05			
CMS total	78	0.53	0.02	0.55			
PHENIX 200	2	2.21	0.88	3.08			
STAR 510	7	1.05	0.10	1.15			
DY collider total	251						
DY fixed-target total	233	Ine Siu	Ine SIDIS errors should be reduce				
			•	·			
HERMES total	344	0.48	0.23	0.71			
HERMES total COMPASS total	344 1203	0.48 0.62	0.23 0.3	0.71 0.92			
HERMES total COMPASS total SIDIS total	$ \begin{array}{r} 344 \\ 1203 \\ 1547 \end{array} $	$\begin{array}{c} 0.48 \\ 0.62 \\ 0.59 \end{array}$	0.23 0.3 0.28	0.71 0.92 0.87			

EXAMPLE OF AGREEMENT WITH DATA: HERMES

EXAMPLE OF AGREEMENT WITH DATA: SIDIS

RESULTING TMDS

FIG. 13: The TMD PDF of the up quark in a proton at $\mu = \sqrt{\zeta} = Q = 2$ GeV (left panel) and 10 GeV (right panel) as a function of the partonic transverse momentum $|\mathbf{k}_{\perp}|$ for x = 0.001, 0.01 and 0.1. The uncertainty bands represent the 68% CL.

As usual, the rigidity of the functional form plays a role and probably leads to underestimated bands

RESULTING COLLINS-SOPER KERNEL

Bermudez Martinez, Vladimirov, arXiv:2206.01105

AVAILABLE TOOLS: NANGA PARBAT

https://github.com/MapCollaboration/NangaParbat

E README.md

Ø

Nanga Parbat is a fitting framework aimed at the determination of the non-perturbative component of TMD distributions.

Download

You can obtain NangaParbat directly from the github repository:

https://github.com/MapCollaboration/NangaParbat

For the last development branch you can clone the master code:

git clone git@github.com:MapCollaboration/NangaParbat.git

AVAILABLE TOOLS: TMDLIB AND TMDPLOTTER

https://tmdlib.hepforge.org/

TMD plotter — De	GEMEINSCHAFT			
Home TMD PI	DF Luminosity	New PDFs	Publications	HEP Links
Parameters X-axis: min = 0.1 max = Y-axis: min = 0.0001 max = ratio: min = 0.4 max = 1. Curves 1. down r PB-NLC 1	2 GeV Olog Iin 2.5 Olog Olin .6 Olog Olin	down P/ (1 ⁻ 1.5 1.5 1.5 1.5 1.5	E-NLO-HERAI+II-2018-set1, x = 0	1, µ = 2 GetV

MAP22 TMDs soon available

OPEN PROBLEM: SIDIS NORMALIZATION

COMPARISON OF DIFFERENT ORDER SIDIS

COMPASS multiplicities (one of many bins)

The description considerably worsens at higher orders

COMPARISON OF DIFFERENT ORDERS

Scimemi, Vladimirov, arXiv:1912.06532

We agree that the predictions beyond NLL are significantly smaller, but according to SV the lowest orders should overestimate data

MAP22 TENTATIVE SOLUTION

The prefactor is independent of the fitting parameters

Higher-order corrections decrease the role of the TMD region. We need to enhance it with a prefactor.

OPEN PROBLEM: TMD REGION IN SIDIS

MAP22 TMD DATA SELECTION

Number of points: 2031

REGION OF VALIDITY OF TMD FORMALISM

Boglione, Diefenthaler, Dolan, Gamberg, Melnitchouk, arXiv:2201.12197

REGION OF VALIDITY OF TMD FORMALISM

The MAP22 cut is already considered to be "generous", but the physics seems to be the same for a much wider $P_{\rm T}$

REGION OF VALIDITY OF TMD FORMALISM

With our cuts, we use about 45 points per channel. With the cuts of SV, $\langle q_T \rangle < 0.25 \langle Q \rangle$, they reduce to 24

Personal opinion: regions where nonperturbative TMD components are dominating must be included in the TMD description 0.2 1.5 0.3 < z < 0.4 1.5 0.3 < z < 0.4

x-Q² COVERAGE

MAP Collaboration Bacchetta, Bertone, Bissolotti, Bozzi, Cerutti, Piacenza, Radici, Signori, arXiv:2206.07598

EXPECTED EXTENSIONS OF DATA RANGE

COVERAGE AND LUMINOSITY

Covering a large range but with limited precision may be useless

EIC SENSITIVITY COEFFICIENTS

EIC Yellow Report, arXiv:2103.05419

EIC IMPACT: REDUCTION OF ERRORS

EIC Yellow Report, arXiv:2103.05419

Big impact of EIC on TMD evolution

CONCLUSIONS

- The formalism works well, but some problems need still to be understood
- Low-Q data are dominated by nonperturbative physics and are invaluable to understand QCD.
- Certain effects (certain structure functions, certain details of TMDs...) may be uniquely accessible at JLab 20+
- Impact studies should be performed to understand the potential of JLab 20+. For unpolarized TMDs, it is feasible. We need to know the foreseen binning and estimated relative errors.

BACKUP SLIDES

SOME JUSTIFICATION: INITIAL SITUATION

SOLUTION 1: RESTRICT TMD REGION

SOLUTION 2: ENHANCE TMD CONTRIBUTIONS

TMD REGIONS: PERTURBATIVE VS. NONPERTURBATIVE

Perturbative approach: TMD region = where the log divergence of the fixed-order calculation dominates (resummation is required) Nonperturbative approach: TMD region = where either the log divergence OR the nonperturbative contributions dominate

TMD region (ideal situation)

TMD REGIONS: PERTURBATIVE VS. NONPERTURBATIVE

Perturbative approach: TMD region = where the log divergence of the fixed-order calculation dominates (resummation is required) Nonperturbative approach: TMD region = where either the log divergence OR the nonperturbative contributions dominate

