Characterization of TESLA-shaped single-cell Nb thin-film cavity with varying RRR values at low temperatures.

Bektur Abdisatarov

September 19, 2022
With the **Superconducting Quantum Materials and Systems** Center (SQMS), we propose to bring the power of DOE laboratories, together with industry, academia and other federal entities, to achieve transformational advances in quantum technologies for computing and sensing.”

✓ We have the ambitious goal of building the first quantum computer at Fermilab

20 Institutions
>275 Collaborators
SQMS S&T Innovation Chain: from material discovery to quantum advantage

Materials Discovery → High Coherence Devices → Systems Integration → New quantum computing and sensing platforms → Quantum Advantage
SRF cavity and Nb thin-film characteristics

Cavity parameters
- Type: TESLA-shaped single-cell Nb
- Frequency: 1.3GHz
- Beta: High
- Geometry factor: 273Ω

Thin-film deposition parameters
- Main pulse duration: 200us
- Bias voltage: -75V
- Power: 1200W
- Pressure: 3x10^{-3}mbar
- Temperature: 150°C
- Deposition time: 6 hours
- Target: Nb RRR300
- Background gas: Kr
- Thickness: 6μm

Data: CERN

Nb cavity was designed and fabricated at Fermilab. Nb thin film was optimized and coated at CERN.

Motivation: The superconducting properties of niobium in microwave fields vary significantly with lattice defects and impurity content, where sub-at.% impurity level can reduce or increase microwave surface resistance.
Vertical Test Stand (VTS) cavity testing

O. Melnychuk, A. Grassellino, A. Romanenko “Error analysis for intrinsic quality factor measurement in superconducting radio frequency resonators”
The cavity was limited at $E_{acc} \approx 10.2 \text{ MV/m}$ by a quench.
Thermometry Mapping

TMAP system

- 36 boards
- 16 carbon resistive sensors (576 sensors)
- Measurement efficiency %35
Dilution Fridge (DR) cavity testing

Images: Oxford Instruments

BlueFors dilution fridge system at Fermilab
The cavity was tested from 10K down to 40mK to measure the frequency and quality factor dependence as a function of temperature at low fields.

The cavity performance was similar to that of bulk niobium cavities at the quantum regime.
BCS Halbritter fitting MFP of Thin Film Nb on 1.3GHz Nb Cavity

\[\Delta \lambda(T) = - \frac{G \Delta f_0(T)}{\mu_0 \pi f_0^2(T_0)} \]

- \(\Delta \lambda \) is the shift in the penetration depth
- \(\Delta f_0(T) = f_0(T) - f_0(T_0) \) is the shift in the resonant frequency
- \(T_0 \approx 7 \) K for niobium

Model

<table>
<thead>
<tr>
<th>Model</th>
<th>BCSHalbritter_Full</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equation</td>
<td>BCS fit</td>
</tr>
<tr>
<td>Plot</td>
<td>(\Delta \lambda)</td>
</tr>
<tr>
<td>(f_0)</td>
<td>1.3E9 ± 0</td>
</tr>
<tr>
<td>(T_c)</td>
<td>9.38 ± 0</td>
</tr>
<tr>
<td>gap</td>
<td>1.95857 ± 0.03057</td>
</tr>
<tr>
<td>lambda</td>
<td>390 ± 0</td>
</tr>
<tr>
<td>(x_i)</td>
<td>620 ± 0</td>
</tr>
<tr>
<td>mfp</td>
<td>618.30932 ± 17.040</td>
</tr>
<tr>
<td>(R_{res})</td>
<td>5E-9 ± 0</td>
</tr>
<tr>
<td>flag</td>
<td>0 ± 0</td>
</tr>
<tr>
<td>(T_0)</td>
<td>7.087 ± 0</td>
</tr>
<tr>
<td>Reduced Chi-S</td>
<td>7136.79843</td>
</tr>
<tr>
<td>R-Square (CO)</td>
<td>0.996</td>
</tr>
<tr>
<td>Adj. R-Square</td>
<td>0.99569</td>
</tr>
</tbody>
</table>

BCS fitting on shift in penetration depth
Measured and Calculated Q and Rs comparison

\[R_s = \frac{G}{Q} \]

where G is a geometry factor. (G=273\(\Omega\))
Characterization of Nb films. (microstructure, surface morphology, microwave properties, etc…)}
Nb thin film on Nb substrate

Thin-film deposition parameters

- Main pulse duration: 200us
- Bias voltage: -75V
- Power: 1200W
- Pressure: 3x10^{-3} mbar
- Temperature: 150°C
- Deposition time: 6 hours
- Target: Nb RRR300
- Background gas: Kr
- Thickness: 6μm
- Substrate: Niobium (200)
- Substrate size: 1cm X 1cm

Data: CERN

- Nb thin films deposited on Nb substrates by using Bipolar HiPIMS with the same parameters at CERN.
Surface morphology and thickness

❖ RMS surface roughness is 13.4 nm (scanned area 10 μm X 10 μm)
❖ Thickness is 6.5 μm
Grain size and orientations

Band contrast Euler color Band contrast Euler color

Transmission EBSD

Area-Weighted Fraction

0
0.05
0.1

0 0.2 0.4 0.6 0.8 1.0 1.2

Area (um²)
Oxygen layer detected by high-resolution TEM

- The growth type of the thin film is **Volmer-Weber (3D islands)**.
- The oxygen layer **prevents epitaxial growth**.
- Nb films grow **randomly** on the Nb substrate.
The thin film was polycrystalline dominated by Nb (110) orientation. Nb (200), Nb(211), and Nb (220) oriented structures were detected. The concentration of elements showed that C, 52.51%; O, 32.06%; and Nb, 15.43% on the surface.
High concentrated oxygen layer on the surface and at the interface

- 500 um x 500 um sputter area
- 200 um x 200 um analysis area

3D render of Nb
3D render of O
3D render of Nb$_2$O$_5$
3D render of NbO$_2$
Cavity performance after Mid-T baking at 340°C for 1 hour.
What changed after Mid-T baking?

❖ After “in-situ” Mid-T baking at 340°C for 1 hour, the cavity was limited at \(E_{\text{acc}} \approx 12.8 \text{ MV/m} \) by a quench.

❖ Quality factor increased by factor 10 at the low field at 1.5K after Mid-T baking.
Thermometry MAP

Hot spot area before Mid-T baking

Hot spot area after Mid-T baking
Hot spot area on the cavity

Before Mid-T baking

After Mid-T baking

30 degree
What is next?

- Dilution fridge (DR) test after Mid-T baking.
- VTS and DR tests after Nitrogen doping treatment.

- Create coplanar quarter wave 2D resonators by using Nb (RRR300) thin films deposited on sapphire substrates with different PVD systems.

Designed quarter-wave resonators inductively coupled with a single 50Ω feedline.
Conclusion

❖ The cavity performance was similar to that of bulk niobium cavities at the quantum regime. At mid and high field, the quality factor of the Nb thin film cavity was lower than the bulk Nb cavity.

❖ Nb Thin film was polycrystalline dominated by the Nb (110) orientation. Nb (200), Nb(211), and Nb (220) structures were detected. The root mean square (RMS) of surface roughness is 13.4 nm.

❖ The conventional method of concentration of elements showed that C, 52.51%; O, 32.06%; and Nb, 15.43% on the surface. At the surface of the film and the intersection, an oxide layer was observed. The oxide layer at the intersection prevented epitaxial thin film growth.

❖ The cavity was limited at $E_{\text{acc}} \approx 10.2$ MV/m by a quench. After Mid-T baking, it increased to $E_{\text{acc}} \approx 12.8$ MV/m. The heated local area is not at the equator as expected. After Mid-T baking, it moved to a different area.

❖ At the low field, the quality of the cavity increased by factor 2 at 2K and it increased approximately 10 times at 1.5K after Mid-T baking.
Thank you

Address: Fermilab

Contact: 773 558 6588

Email: bektur@fnal.gov