Opportunities for Deep Exclusive Meson Production with Higher Energy JLab beam

Garth Huber

GPDs in Deep Exclusive Meson Production

PDFs: probability of finding a parton with longitudinal momentum fraction *x* and specified polarization in fast moving hadron.

Garth Huber, huberg@uregina.ca

GPDs : interference between partons with $x+\xi$ and $x-\xi$, interrelating longitudinal momentum & transverse spatial structure of partons within fast moving hadron.

A special kinematic regime is probed in Deep Exclusive Meson Production, where the initial hadron emits $q \overline{q}$ or gg pair.

- GPDs determined in this regime carry information about $q\overline{q}$ and gg-components in the hadron wavefunction.
- Because quark helicity is conserved in the hard scattering regime, the produced meson acts as helicity filter. $\tilde{H} \tilde{E}$
 - Pseudoscalar mesons \rightarrow

The most sensitive observable to probe \tilde{E} is the transverse target single-spin asymmetry in exclusive π production:

$$A_L^{\perp} = \frac{\sqrt{-t'}}{m_p} \frac{\xi\sqrt{1-\xi^2} \operatorname{Im}(\tilde{E}^*\tilde{H})}{(1-\xi^2)\tilde{H}^2 - \frac{t\xi^2}{4m_p}\tilde{E}^2 - 2\xi^2 \operatorname{Re}(\tilde{E}^*\tilde{H})}.$$

These experimental measurements can provide new nucleon structure information unlikely to be available from any other source.

GPD information in \mathbf{A}_{L}^{\perp} may be particularly clean

This relatively low value of Q² for the expected onset of precocious scaling is important, because it is experimentally accessible at JLab 12 GeV.

Transverse Target Single Spin Asymmetry in DEMP

Note: Trento convention used for rest of talk

Unpolarized
Cross section
$$2\pi \frac{d^2 \sigma_{UU}}{dtd\phi} = \varepsilon \frac{d\sigma_L}{dt} + \frac{d\sigma_T}{dt} + \sqrt{2\varepsilon(\varepsilon+1)} \frac{d\sigma_{LT}}{dt} \cos\phi + \varepsilon \frac{d\sigma_{TT}}{dt} \cos 2\phi$$
Transversely
polarized cross
section has
additional
components
$$\frac{d^3 \sigma_{UT}}{dtd\phi d\phi_s} = -\frac{P_{\perp} \cos \theta_q}{\sqrt{1-\sin^2 \theta_q} \sin^2 \phi_s} \begin{cases} \sin\beta \operatorname{Im}(d\sigma_{++}^{+-} + \varepsilon d\sigma_{00}^{+-}) \\ + \sin\phi\sqrt{\varepsilon(1+\varepsilon)} \operatorname{Im}(d\sigma_{+-}^{+-}) \\ + \sin(\phi+\phi_s)\frac{\varepsilon}{2} \operatorname{Im}(d\sigma_{+-}^{+-}) \\ + \sin(2\phi-\phi_s)\sqrt{\varepsilon(1+\varepsilon)} \operatorname{Im}(d\sigma_{+0}^{-+}) \\ + \sin(2\phi-\phi_s)\sqrt{\varepsilon(1+\varepsilon)} \operatorname{Im}(d\sigma_{+-}^{-+}) \\ + \sin(3\phi-\phi_s)\frac{\varepsilon}{2} \operatorname{Im}(d\sigma_{+-}^{-+}) \\ + \sin(3\phi-\phi_s)\frac{\varepsilon}{2} \operatorname{Im}(d\sigma_{+-}^{-+}) \\ = -\sum_k A_{UT}^{\sin(\mu\phi+\lambda\phi_s)_k} \sin(\mu\phi+\lambda\phi_s)_k \end{cases}$$

Unseparated sinβ=sin(φ- $φ_s$) Asymmetry Moment/

$$\left| A_{UT}^{\sin(\phi-\phi_s)} \sim \frac{d\sigma_{00}^{+-}}{d\sigma_L \binom{++}{00}} \sim \frac{\operatorname{Im}(\tilde{E}^*\tilde{H})}{\left|\tilde{E}\right|^2} \text{ where } \tilde{E} \gg \tilde{H} \right|$$

Ref: M. Diehl, S. Sapeta, Eur.Phys.J. C**41**(2005)515.

HERMES sin(ϕ – ϕ _S) Asymmetry Moment

- Exclusive π⁺ production by scattering 27.6 GeV positrons or electrons from transverse polarized ¹H [PL B682(2010)345].
- Analyzed in terms of 6 Fourier amplitudes for φ_π,φ_s.
- $\langle x_B \rangle = 0.13, \langle Q^2 \rangle = 2.38 \text{ GeV}^2, \\ \langle -t \rangle = 0.46 \text{ GeV}^2.$

- Since there is no L/T separation, $A_{UT}^{sin(\varphi-\varphi s)}$ is diluted by the ratio of the longitudinal cross section to the unseparated cross section.
- Goloskokov and Kroll indicate the HERMES results have significant contributions from transverse photons, as well as from L and T interferences [Eur Phys.J. C65(2010)137].
- Because no factorization theorems exist for exclusive π production by transverse photons, these data cannot be trivially interpreted in terms of GPDs.

HERMES $sin(\varphi_s)$ Asymmetry Moment

While most of the theoretical interest and the primary motivation of our experiment is the sin(φ-φ_s) asymmetry moment, there is growing interest in the sin(φ_s) moment, which may be interpretable in terms of the transversity GPDs.

- In contrast to the sin(φ-φ_s) modulation, which has contributions from LL and TT interferences, the sin(φ_s) modulation measures only the LT interference.
- The HERMES sin(φ_S) modulation is large and nonzero at -t'=0, giving the first clear signal for strong contributions from transversely polarized photons at rather large values of W and Q².
- Goloskokov and Kroll calculation [Eur.Phys.J. C65(2010)137] assumes the transversity GPD H_T dominates and that the other three can be neglected.

Measure DEMP with SoLID – Polarized ³He

E12-10-006B Kinematic Coverage and Binning

- In actual data analysis, we will consider alternate binning.
- All JLab data cover a range of *Q*², *x*_{Bj} values.
 - x_{Bj} fixes the skewness (ξ).
 - Q^2 and x_{Bj} are correlated. In fact, we have an almost linear dependence of Q^2 on x_{Bj} .
- HERMES and COMPASS experiments are restricted kinematically to very small skewness (ξ<0.1).
- With SoLID, we can measure the skewness dependence of the relevant GPDs over a fairly large range of ξ.

Opportunities with higher E_{beam} & SoLID

- Investigated some kinematics to see effect of a higher beam energy on the SoLID experiment
- For good π[±]/K[±] separation, current design (with MRPC timing resolution of 20 ps) will work to 7 GeV/c
 - SoLID would need further-improved timing resolution or other method to allow good PID at higher momenta
- Restricting to 7 GeV/c, n(e,e'π⁻)p count rate with 15 GeV beam at Q²=6.0, W=3.0, -t_{min}=0.32, x=0.42, would increase by roughly an order of magnitude, due to larger available virtual photon flux
 - Dramatic effect: allow finer binning of data, enabling the skewness-dependence of the single spin asymmetries to be studied in much greater detail
- If can achieve good PID to ~9 GeV/c, then Q²=10, W=2.8, x=0.59, -t_{min}=0.67 data can be acquired at 17 GeV

Garth Huber, huberg@uregina.ca

DEMP Opportunities in Hall C

- I) Determine the France Fraction Fract
- The pion form factor is a key QCD observable.
- The experiment should obtain high quality F_{π} over a broad Q^2 range. Rated "high impact" by PAC.

2) Study the Hard-Soft Factorization Regime:

- Need to determine region of validity of hardexclusive reaction meachanism, as GPDs can only be extracted where factorization applies.
- Separated p(e,e'π⁺)n cross sections vs. Q² at fixed x to investigate reaction mechanism towards 3D imaging studies.
- Perform exclusive π^{-}/π^{+} ratios from ²H, yielding insight to hard—soft factorization at modest Q^{2} .

Charged Pion Form Factor

The pion is attractive as a QCD laboratory:

Simple, 2 quark system

- The pion is the "positronium atom" of QCD, its form factor is a test case for most model calculations
- The important question to answer is: What is the structure of the π^+ at all Q^2 ?

A program of study unique to Jefferson Lab Hall C (until the completion of the EIC) Measurement of π⁺ Form Factor – Larger Q²

At larger Q^2 , F_{π} must be measured indirectly using the "pion cloud" of the proton via pion electroproduction $p(e,e'\pi^+)n$

$$\left| p \right\rangle = \left| p \right\rangle_{0} + \left| n \pi^{+} \right\rangle + \dots$$

- At small –*t*, the pion pole process dominates the longitudinal cross section, σ_L
- In Born term model, F_{π}^2 appears as,

$$\frac{d\sigma_L}{dt} \propto \frac{-tQ^2}{(t-m_\pi^2)} g_{\pi NN}^2(t) F_\pi^2(Q^2,t)$$

Drawbacks of this technique 1.Isolating σ_L experimentally challenging 2.Theoretical uncertainty in form factor extraction.

- L-T separation required to separate $\sigma_{\rm L}$ from $\sigma_{\rm T}$.
- Need to take data at smallest available -t, so $\sigma_{\rm L}$ has maximum contribution from the π^+ pole.

Garth Huber, huberg@uregina.ca

HMS and SHMS during Data Taking

U.S. DEPARTMENT OF Office of Science

SJSA

Model incorporates π^+ production mechanism and spectator neutron effects:

VGL Regge Model:

• Feynman propagator $\left(\frac{1}{t - m_{\pi}^2}\right)$

replaced by π and ρ Regge propagators.

- Represents the exchange of a <u>series</u> of particles, compared to a <u>single</u> particle.
- Free parameters: Λ_π, Λ_ρ (trajectory cutoff).

[Vanderhaeghen, Guidal, Laget, PRC 57(1998)1454]

• At small –*t*, σ_L only sensitive to F_{π}

$$F_{\pi} = \frac{1}{1 + Q^2 / \Lambda_{\pi}^2}$$

Fit to σ_L to model gives F_{π} at each Q^2

Error bars indicate statistical and random (pt-pt) systematic uncertainties in quadrature. Yellow band indicates the correlated (scale) and partly correlated (t-corr) systematic uncertainties.

 $\Lambda_{\pi}^2 = 0.513, 0.491 \text{ GeV}^2, \Lambda_{\rho}^2 = 1.7 \text{ GeV}^2.$

Current and Projected F_{π} Data

SHMS+HMS will allow measurement of F_{π} to much higher Q^2 .

No other facility worldwide can perform this measurement.

The pion form factor is the clearest test case for studies of QCD's transition from nonperturbative to perturbative regions.

E12–19–006: D. Gaskell, T. Horn and G. Huber, spokespersons

Garth Huber, huberg@uregina.ca

X

0.31

0.39

0.55

$p(e,e'\pi^+)n Q^{-n}$ Hard–Soft Factorization Test

- QCD counting rules predict the Q^{-n} dependence of $p(e, e'\pi^+)n$ cross sections in Hard Scattering Regime:
 - σ_L scales to leading order as Q^{-6} .

W

(GeV)

2.02 - 3.07

2.05-3.19

2.02-2.79

-t_{min}

0.12

0.21

0.55

• σ_T scales as Q^{-8} .

 \mathbf{Q}^2

 (GeV^2)

1.45-3.65

2.12-6.0

3.85-8.5

• As Q^2 becomes large: $\sigma_L >> \sigma_T$.

 Experimental validation of onset of hard scattering regime is 	
essential for reliable interpretation of JLab GPD program results.	

- If σ_1 becomes large, it would allow leading twist GPDs to be studied.
- If σ_{τ} remains large, it could allow for transversity GPD studies.

 In the hard scattering limit, pQCD predicts that the π⁺ and K⁺ form factors will behave similarly

$$\frac{F_K(Q^2)}{F_\pi(Q^2)} \xrightarrow[Q^2 \to \infty]{} \frac{f_K^2}{f_\pi^2}$$

 It is important to compare the magnitudes and Q²-dependences of both form factors. Garth Huber, huberg@uregina.ca

Projected Uncertainties for K⁺ Form Factor

- First measurement of F_K well above the resonance region.
- Measure form factor to Q²=3 GeV² with good overlap with elastic scattering data.
 - Limited by –t<0.2 GeV² requirement to minimize non–pole contributions.
- Data will provide an important second $q\overline{q}$ system for theoretical models, this time involving a strange quark.

E12–09–011: T. Horn, G. Huber and P. Markowitz, spokespersons

Opportunities with higher E_{beam} & Hall C

- 7.2 GeV/c HMS & 11.0 GeV/c SHMS allow a lot of kinematic flexibility, with no upgrades
 - Maximum beam energy constrained by sum of HMS+SHMS maximum momenta
- L/T-separations with good $\Delta \varepsilon > 0.4$ extend region of high quality σ_{L} measurements to $Q^2=10$, and data at larger $-t_{min}$ (larger F_{π} extraction uncertainties) to $Q^2=11.5$
- Since quality L/T-separations are impossible at the EIC (can't access ε <0.95) this extension of L/T-separated data would considerably increase the overlap in F_{π} data sets between JLab and EIC

p(e,e'π ⁺)n Kinematics							
E _{beam}	θ _{HMS} (e')	P _{HMS} (e')	$egin{array}{c} heta_{ ext{SHMS}} \ (\pi^{\scriptscriptstyle +}) \end{array}$	$P_{SHMS}\ (\pi^+)$	Time FOM		
$Q^2=8.5$ W=3.64 $-t_{min}=0.24$ $\Delta \epsilon=0.49$							
13.0	34.30	1.88	5.29	10.99	64.7		
18.0	15.05	6.88	8.94	10.99	2.2		
$Q^2=10.0$ W=3.44 $-t_{min}=0.37$ $\Delta \epsilon=0.40$							
13.0	37.78	1.83	5.56	10.97	122.7		
18.0	16.39	6.83	9.57	10.97	4.5		
Q ² =11.5 W=3.23 -t _{min} =0.55 Δε=0.29							
14.0	31.53	2.78	7.13	10.93	79.6		
18.0	17.66	6.78	10.11	10.93	8.7		

 $p(e, e'K^+)\Lambda$ kinematic reach would depend on good K^+/π^+ separation in SHMS at high momenta, and likely require some detector upgrades

