Measurement of the anti-quark flavor asymmetry in the proton at FNAL-SeaQuest

JLUO Annual Meeting 2022 2022/June/15

Kenichi Nakano for the SeaQuest Collaboration

University of Virginia

Outline

- 1. Flavor asymmetry of light anti-quarks in the proton: $\bar{d}(x)/\bar{u}(x)$
- 2. SeaQuest experiment
 - Measurement method
 - Beam, target & spectrometer
 - Data taking & analysis procedure
- 3. Measured results
 - $\circ~{
 m Cross-section~ratio}~(\sigma^{pd}/2\sigma^{pp})$ & $ar{d}(x)/ar{u}(x)$
 - \circ Nuclear ratio (R_A) Another SeaQuest result
- 4. SpinQuest Successor with polarized targets
- 5. Conclusions

Anti-Quark Flavor Asymmetry: d/\bar{u}

- CERN NMC ('90): deep inelastic muon scattering
 - $^\circ~~
 m Gottfried~Sum:~S_G=0.235\pm0.026<1/3$

$$\circ \ \int_0^1 \bar{d}(x) dx - \int_0^1 \bar{u}(x) dx = 0.147 \pm 0.039$$

- ... Clear signature of anti-quark flavor asymmetry
- Measurement of x dependence of $d(x)/\bar{u}(x)$: Drell-Yan process
 - $\circ~$ CERN NA51 ('94): $\bar{d} > \bar{u}$ at $x \sim 0.18$
 - FNAL E866/NuSea ('98): $\bar{d}(x)/\bar{u}(x)$ for $x \in (0.015, 0.35)$

Theories of \bar{d}/\bar{u} Asymmetry (1)

- Mass difference between u & d (${\sim}2$ & 5 MeV) in g
 ightarrow q ar q
 - $^\circ~$ Very small and even results in $ar{d} < ar{u}$
- Pauli blocking ... *PRD15*, 2590 (1977)
 - $\circ \ \operatorname{Prob}(g \to u \bar{u}) < \operatorname{Prob}(g \to d \bar{d}) \ \text{since} \ p = u u d$
 - $\circ\,$ Cannot explain the measured size ... NPB149, 497 (1979) $\,$ time $ightarrow\,$
 - Even $\bar{d} < \bar{u}$ via connected sea (at high x)? ... *PLB736*, 411 (2014)
- Chiral quark model ... PRD59, 034024 (1999)
 - ° Effective interaction between Goldstone boson (π) & constituent quark

Theories of \bar{d}/\bar{u} Asymmetry (2)

- Meson cloud model ... PRD58, 092004 (1998)
 - $^{\circ} ~~ |p
 angle = (1-a-b)|p_0
 angle + a|N\pi
 angle + b|\Delta\pi
 angle$
 - More \bar{d} in π^+ as $|n\pi^+\rangle$ etc.
 - Less \bar{u} in π^- as $|\Delta^{++}\pi^-\rangle$ etc.
 - \circ Predict non-zero $L_{q,\bar{q}}$ like "meson tornado" (need L = 1 of π to make $J^P = 1/2^+$ of proton, as parity of π is $J^P = 0^-$)

- Statistical model ... NPA941, 307 (2015)
 - Based on the Fermi & Bose statistics
 - Predicts $\bar{d}(x) \bar{u}(x) = -\left[\Delta \bar{d}(x) \Delta \bar{u}(x)\right]$

Comparison of Theories to Measurements

Meson cloud model: PRD58, 092004 Chiral quark model: NPA596, 397 Chiral quark model: PRD59, 034024 Instanton model: PLB304, 167 (Updated calculations exist)

- The x dependence of d(x)/ū(x) is the key to develope/examine models
 Sharp drop at x ~ 0.3. Even go down to d
 < u?
- Reveal what QCD mechanism generates the asymmetric sea!

2. SeaQuest Experiment

Measurement of $\bar{d}(x)/\bar{u}(x)$ with Drell-Yan Process

- Drell-Yan process: $p + p \rightarrow \gamma^* \rightarrow \mu^+ + \mu^-$
 - Virtual photon
 - •• Invariant mass: $M^2 = x_{beam} x_{target} s$
 - •• Rapidity: $\exp Y = \sqrt{x_{beam}/x_{target}}$
 - $x_{beam} = \frac{M}{\sqrt{s}}e^{Y}$, $x_{target} = \frac{M}{\sqrt{s}}e^{-Y}$
 - Cross section at LO:

$$\frac{d^2\sigma}{dx_b dx_t} = \frac{4\pi\alpha^2}{9x_b x_t} \frac{1}{s} \sum_{q=u,d} e_q^{-2} \left\{ q_b(x_b) \bar{q}_t(x_t) + \bar{q}_b(x_b) q_t(x_t) \right\}$$

- Only " $q_b(x_b)\bar{q}_t(x_t)$ " survives @ forward rapidity, i.e. quark in beam & anti-quark in target
- Ratio of cross sections with LH2 & LD2 targets

$$rac{\sigma_D(x_t)}{2\sigma_H(x_t)}pprox rac{1}{2}\left(1+rac{ar{d}(x_t)}{ar{u}(x_t)}
ight)$$

• SeaQuest measures the x dependence of $\bar{d}(x)/\bar{u}(x)$ particularly at high x (0.15 $\leq x \leq 0.45$)

Fermilab Proton Beam

- Energy E = 120 GeV($\sqrt{s} = 15 \text{ GeV}$)
- Duty cycle
 - 5 sec for E906
 - \circ 55 sec for ν exp.
- Bunch
 - Length: 1 nsec
 - Interval: 19 nsec (53 MHz)
 - 10¹³ protons in 5 sec in spot size

Measurement of the anti-quark flavor asymmetry in the proton at FNAL-SeaQuest

FNAL-SeaQuest Collaboration

- Institutes
- Abilene Christian Univ.
- Argonne National Lab
- Fermi National Accelerator Lab
- KEK _{Jp}
- Los Alamos National Lab
- Univ. of Michigan
- National Kaohsiung Normal Univ.
- Rutgers Univ.
- Yamagata Univ. Jp

- Academia Sinica _{Tw}
- Univ. of Colorado
- Univ. of Illinois

RIKEN Jp

Tokyo Tech Jn

- $\circ~$ Ling-Tung Univ. $_{\rm Tw}$
- Univ. of Maryland
- Mississippi State Univ.

Measurement of the anti-quark flavor asymmetry in the proton at FNAL-SeaQuest

0

0

E906/SeaQuest Spectrometer

- Targets: LH₂, LD₂, C, Fe, W
- Focusing magnet (FMag) & Tracking magnet (KMag)
- Iron inside FMag, as hadron absorber & beam dump

SeaQuest Targets

- LH₂, LD₂
 - $^\circ~50.8~cm\sim0.1$ interaction lengths
- Iron, Carbon, Tungsten

SeaQuest Hall — 2015-July-27

Measurement of the anti-quark flavor asymmetry in the proton at FNAL-SeaQuest

SeaQuest Data Taking

• Data-taking periods

Year	Month	Event
2012	03-04	1st data taking (commissioning)
2013	11-	2nd data taking (10 months)
2014	11-	3rd data taking (8 months)
2015	10-	4th data taking (10 months)
2016	12-	5th data taking (7 months)

- Beam protons on targets
 - $\circ~1.4\times10^{18}~recorded$
 - $\circ~0.6 imes 10^{18}$ analyzed for the 1st $ar{d}/ar{u}$ result & others

Reconstruction & Identification of Drell-Yan Events

- Unlike-sign muon pairs were triggered and reconstructed
- Distribution of dimuon mass

- $\circ~$ Drell-Yan, J/ψ & ψ' events from simulation
- Non-target events from empty target
- Random-coincidence BGs from real data via event mixing
- Origins of measured dimuons well understood
- Dominated by Drell-Yan at M > 4.5 GeV

3. Measured Results

Extraction of $\overline{d}(x)/\overline{u}(x)$ — Analysis Outline

- Dimuon yields
 - With LH2 & LD2 targets for σ_H & σ_D
 - $^{\circ}$ At invariant mass $> 4.5~{
 m GeV}$

₩

- Cross-section ratio: $\sigma_D/2\sigma_H \operatorname{vs} x_t$
 - Normalized by relative beam luminosity
 - Corrected for backgrounds & efficiencies

$$rac{\sigma_D(x_t)}{2\sigma_H(x_t)}pprox rac{1}{2}\left(1+rac{ar{d}(x_t)}{ar{u}(x_t)}
ight)$$

- $\bar{d}(x)/\bar{u}(x)$ vs x
 - $\circ~~ ext{Iterative computations of } \sigma_D/2\sigma_H ext{ from } ar{d}/ar{u}$
 - Using the SeaQuest data alone to demonstrate its impact
 - Anticipating global analyses for more-accurate extractions

Cross-Section Ratio: $\sigma_{pd}/2\sigma_{pp}$

SeaQuest result

Nature 590, 561 (2021)

- Systematic errors
 - Beam-intensity extrapolation
 - Relative luminosity
- $\sigma_{pd}/2\sigma_{pp}$ always > 1 in measured *x* range

Cross-Section Ratio: $\sigma_{pd}/2\sigma_{pp}$

- Effects of experimental kinematics
 - Shown by the calculations using CT18 NLO
 - $\,\circ\,$ Account for the difference at $x_t\sim 0.15$

$$\frac{d^2\sigma}{dx_b dx_t} = \frac{4\pi\alpha^2}{9x_b x_t} \frac{1}{s} \sum_{q=u,d} e_q^{-2} \left\{ q_b(x_b) \bar{q}_t(x_t) + \bar{q}_b(x_b) q_t(x_t) \right\}$$

Anti-Quark Flavor Asymmetry: $ar{d}/ar{u}$

SeaQuest result

Nature 590, 561 (2021)

- Systematic errors
 - Errors of cross-section ratio
 - \bar{d}/\bar{u} above measured *x* region (> 0.45)
 - Nuclear effect for deuterium
- Large asymmetry at high *x* as well as low *x*

Anti-Quark Flavor Asymmetry: $ar{d}/ar{u}$

• Comparison to NuSea/E866 result

- Agreement at low $x (\sim 0.2)$
- The trends at high *x* are quite different
 - No explanation has been found for the difference

Anti-Quark Flavor Asymmetry: $ar{d}/ar{u}$

Comparison to theory calculations

- Reasonably described by two theoretical predictions
- Improved analyses are ongoing
 - Better statistics with full dataset
 - Better systematics with fine-tuned simulation

Therotical Calculations about $ar{d}/ar{u}$

• The SeaQuest data have been analyzed, together with the RHIC-STAR W^{\pm} data, including but not limited to

Nuclear Effects by SeaQuest

• $R_A \equiv \hat{\sigma}^{p+A} / \hat{\sigma}^{p+p}$

= Ratio of per-nucleon cross sections

- 1. $R_A \text{ vs } x_{target}$: Effect on antiquarks
 - Smaller than that on quarks? (PRL64, 2479)
 - $\circ 0.1 < x_{target} < 0.45$
- 2. Effect on quarks in beam proton

 Parton energy loss in cold-nuclear matter

 2.1 R_A vs x_{beam}: Energy loss

 x_{beam} > 0.6, x_{target} > 0.15

 2.2 R_A vs p_T: p_T broadening

 $\circ \circ \ 0.1 < x_{target} < 0.45$

• R_A should be comprehensively examined to untangle the effects of nuclear PDFs and partonic energy loss

• E866

• Result of " R_A vs x_{target} "

 $\circ R_A$ deviates from 1 by 10% at max

- $\,\circ\circ\,\,$ Different from quarks ($R_A\gtrsim 1.1)!$
- •• Close to the calculation of pion excess model by Miller (PRC 64, 022201)
- Same trend as the EMC effect (i.e. R_A decreases at middle x)

• Comparison with E772 result

- Agreement within measurement accuracy
- $\circ~$ Better precision at $x_{target}\gtrsim 0.2$ by SeaQuest

4. SpinQuest \sim Successor with Polarized Targets \sim

SpinQuest/E1039

- Sivers distribution: $f_{1T}^{\perp}(x)$
 - One of eight TMD PDFs
 - \circ Correlation of parton k_T with proton spin
- Extraction by global analyses
 - PRD 88 (2013) 114012, P. Sun & F. Yuan
 - PRD 89 (2014) 074013, M. G. Echevarria et al.
 - JHEP 04 (2017) 046, M. Anselmino et al.
 - •• Use of HERMES, COMPASS & JLab data
 - •• First moment of Sivers function: $x\Delta^N f^{(1)}(x) \equiv -xf_{1T}^{\perp(1)}(x)$
- *f*[⊥]_{1T}(*x*) of anti-quarks is not well known
 Since *q* & *q* are mixed up in SIDIS
- SpinQuest will
 - $\circ~$ Measure Sivers asymmetry of $ar{u}$ & $ar{d}$
 - Via proton-induced Drell-Yan process
 - Using new polarized targets of NH3 & ND3

Anticipated Sensitivity

- Conditions
 - Two years of data taking
 - $NH_3:ND_3 = 50\%:50\%$ in time
 - Details in the E1039 proposal
- Transverse Single-Spin Asymmetry (TSSA): $A_{UT}^{\sin \phi_S}$
 - $\circ~~{
 m Measurement~precision}~\delta_{A_N}\sim 0.04$
- Aim to observe non-zero anti-quark Sivers asymmetry!!

Preparations toward Data Taking

- Will start the commissioning in Fall 2022, using the proton beam
- Polarized target
 - Target with cryostat
 - •• Standalone tests were already completed
 - •• Being assembled in cave

- Roots pump & Helium liquefier
 - •• High capacity for high beam intensity
 - •• Being tested for full He circulation

- Examination of J/ψ TSSA measurement, as "Day-One" physics
 - Maximum Sivers asymmetry
 - •• Based on NRQCD PRD 102, 094011

- $^\circ$ Anticipated statistical precision: δ_{AN}
 - o Based on PYTHIA8
 - •• In case of one-week data taking
- Optimizations of run configuration
 - $^\circ~$ Dimuon trigger for J/ψ and/or Drell-Yan
 - Magnetic field
 - Realistic detector response in simulation tests

 $\delta_{AN} ~{\rm of} ~J/\psi ~{\rm vs}~ x_2$ and p_T (GeV)

Conclusions

• SeaQuest

- \circ Designed to measure Drell-Yan process at high x
- $\circ~ar{d}(x)/ar{u}(x)\sim 1.5$ up to x=0.45
- Reasonably described by "meson cloud model" & "statistical model"
- Improved analyses are ongoing
 - •• Better statistics with full dataset
 - •• Better systematics with fine-tuned simulation
- $^\circ~$ Nuclear effects, J/ψ production, Drell-Yan angular distribution, etc.
- SpinQuest
 - Measurement of Sivers functions $(f_{1T}^{\perp}(x))$ of anti-quarks
 - $\circ~$ Via Drell-Yan process with polarized NH3 & ND3 targets
 - In final preparation and then data taking in Fall 2022. Please contact spokespersons if interested:

Dustin Keller (UVA, dustin@virginia.edu) & Kun Liu (LANL, liuk@lanl.gov)

Backup Slides

Analysis Step 1 — Cross-Section Ratio

- Measure dimuon events
 - With LH2 & LD2 targets
 - At M > 4.5 GeV
- Take the ratio of dimuon yields in *p*+*p* & *p*+*d*

$$rac{Y_D(x_t,I)}{2Y_H(x_t,I)} ~~ ext{with}~~ Y_{H,D}(x_t,I) = rac{N_{H,D}(x_t,I)}{L_{H,D}} - rac{N_{Empty}(x_t,I)}{L_{Empty}}$$

- Normalized by relative beam luminosity
- Corrected for non-target events
- Correct the yield ratio
 - For random BGs and reconstruction efficiency
 - Via "beam-intensity extrapolation"

$$rac{Y_D(x_t,I)}{2Y_H(x_t,I)} = rac{\sigma_{pd}(x_t)}{2\sigma_{pp}(x_t)} + a\,I + b\,I^2$$

• Obtain $\sigma_{pd}/2\sigma_{pp} \operatorname{vs} x_t$

$$\frac{\sigma_{pd}(x_t)}{2\sigma_{pp}(x_t)} \approx \frac{1}{2} \left(1 + \frac{\bar{d}(x_t)}{\bar{u}(x_t)} \right)$$

Analysis Step $2 - \bar{d}/\bar{u}$

- Derivation of $ar{d}(x)/ar{u}(x)$ from $\sigma_{pd}/2\sigma_{pp}$
 - $\circ~$ Using the SeaQuest data alone to demonstrate its impact
 - Anticipating global analyses for more-accurate extractions
- Procedure
 - $\circ \;\; "\sigma_{pd}/2\sigma_{pp} pprox (1+ar{d}/ar{u})/2"$ is not valid at high x_t because the assumption " $x_b \gg x_t$ " breaks
 - $\circ~$ Iterative computations of $\sigma_{pd}/2\sigma_{pp}~$ from $ar{d}/ar{u}$
 - 1. Have the measured $\sigma_{pd}/2\sigma_{pp}~(\equiv R_{meas})$
 - 2. Initialize $\bar{d}(x)/\bar{u}(x) = 1$
 - 3. Calculate the cross-section ratio ($\equiv R_{pred}$) without assuming $x_b \gg x_t$:

$$\sigma(x_b,x_t) \propto \sum_{q=u,d,s,c} e_q^{-2} \left\{ q_b(x_b) ar q_t(x_t) + ar q_b(x_b) q_t(x_t)
ight\}$$

- •• At NLO
- •• Take $u(x), d(x), s(x), c(x) \& \bar{u}(x) + \bar{d}(x)$ from CT18 PDF
- •• Apply the measured kinematic region (i.e. $x_b \& x_t$) evaluated by simulation
- 4. Adjust $\overline{d}(x)/\overline{u}(x)$ to reduce $R_{pred} R_{meas}$
- 5. Go back to #3 until $R_{pred} \approx R_{meas}$

Cross-Section Ratio ($\sigma_{pd}/2\sigma_{pp}$) vs Dimuon p_T

Cross-Section Ratio ($\sigma_{pd}/2\sigma_{pp}$) vs Dimuon Mass

Mass Distribution — LH2

Mass Distribution — LD2

Beam-Intensity Extrapolation

Comparison to Theory Calculations

Statistical model ... NPA948, 63 (2016)
 Based on the Fermi-Dirac statistics:

$$\begin{split} xq^{h}(x) &= \frac{AqX_{0q}^{h}x^{bq}}{\exp\left[(x - X_{0q}^{h})/\bar{x}\right] + 1} + \frac{\bar{A}qx^{\bar{b}q}}{\exp\left[(x/\bar{x}) + 1\right]} \\ x\bar{q}^{h}(x) &= \frac{\bar{A}q\left(X_{0q}^{-h}\right)^{-1}x^{b\bar{q}}}{\exp\left[(x + X_{0q}^{-h})/\bar{x}\right] + 1} + \frac{\bar{A}qx^{\bar{b}q}}{\exp\left[(x - x)(x) + 1\right]} \end{split}$$

- - $\circ\circ~ar{d}/ar{u}
 ightarrow 2.5~{
 m as}~x
 ightarrow 1$
- Expects opposite spin polarization: $\Delta \bar{d}(x) - \Delta \bar{u}(x) \approx - [\bar{d}(x) - \bar{u}(x)]$
 - $\circ\circ$ Compatible with A_L of W^\pm at RHIC
- Considers no orbital angular momentum

