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Data Science at 
Jefferson Lab

Mission:
• Provide world-class data science solutions to advance research in nuclear physics by working with the subject 

matter experts at Jefferson Lab, partnering Universities and Labs, and the Department of Energy.
• Provide world-class data science solutions to scientific applications relevant to the regional scientific community

Vision:
• Expand the capability and capacity of data science at JLab
• Create a collaborative data science research hub to:

1. Provide world-class solutions to scientific challenges
2. Provide real-time optimization solutions for complex system
3. Champion education and research opportunities with regional Universities and industry
4. Reduce the carbon footprint by optimizing the data science workflow and algorithms



FY22 LAB S&T Agenda, Milestones – Data Science & AI/ML
Overall Goals:

• Establish JLab as the data science hub for nuclear physics and 
regional scientific applications

• Develop a core capability targeting key elements of the Basic 
Research Needs (BRNs) defined in the SciML report, etc.

• Provide education and research opportunities to regional 
universities and industries

Yearly Activities and Milestones:

• Participate in HEP, NP, ASCR, and SciDAC proposal calls 
(expand as opportunities become available)

• Participate in DOE data science related workshops and BRN 
reports

• Continuously reevaluate based on State of the Art (SOTA)

• Expand scientific applications and collaborations

FY22:

• Establish a data science priority research needs and data availability 
for JLab:

• Experimental Halls, Theory, Accelerator, and Facilities

• Establish collaborations with regional universities and national laboratories

• Develop core capabilities:

－Infrastructure:

• Evaluate latest SOTA workflow tools for data science 

• Evaluate datasets and model repositories

• Identify/evaluate needs for digital twin

－Methods & Algorithms (addressing the needs of the SciML BRN):

• Expand capability in ML-based uncertainty quantification
techniques

• Develop interpretability techniques 

• Expand optimization research for design and control

• Domain-aware ML



Data Science Pillars

• Applications:
• NP physics
• Advanced computing
• Health & Climate

• Focued Methods & Algorithms:
• Uncertainty Quantification
• Interpretability and Explainability
• Design & Control

• Infrastructure:
• JLab ML Hub
• JLab Data Hub
• JLab Data Science software
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• Developing a service for model optimization and curation
• Leveraging and extending MLFLOW
• Support machine learning "experiments":

• Hyperparameter search
• Model comparison (visualization, etc.)

• Store Models for reuse
• Centralized model registry and repository
• Versions
• Searchable by model characteristics and requirements

• Extension captures JLab specific domain metadata and access control policies

Accuracy by learning rate

JLab ML Hub



Data Science Methods 
& Algorithms
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Domain-aware
leveraging & respecting

scientific domain knowledge

Interpretable
explainable & understandable results
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physical principles & symmetries
physics-informed priors

structure-exploiting models
⋮

model selection
exploiting structure in high-dim data

uncertainty quantification + ML
⋮

probabilistic modeling in ML
quantifying well-posedness

reliable hyperparameter estimation
⋮

SciML
Foundations

Machine 
Learning

for Advanced 
Scientific 

Computing 
Research

Figure 1: Foundational research themes of SciML must tackle the challenges of creating domain-
aware, interpretable, and robust ML formulations, methods, and algorithms.
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ML methods for multimodal data
in situ data analysis with ML

ML to optimally guide data acquisition
ڭ

ML-enabled adaptive algorithms
ML parameter tuning

ML-based multiscale surrogate models
ڭ

exploration of decision space with ML
ML-based resource mgt & control

optimal decisions for complex systems
ڭ
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Figure 2: Opportunities for SciML impact arise in scientific inference and data analysis; in ML-
enhanced modeling and simulation; in intelligent automation and decision support; and in related
applications.
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Figure 2: Opportunities for SciML impact arise in scientific inference and data analysis; in ML-
enhanced modeling and simulation; in intelligent automation and decision support; and in related
applications.



Machine Learning
• Machine learning is a field focused on 

understanding and building methods that 
'learn' a set of tasks

• There are a wide range of techniques
• Selection depends on the available data
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Uncertainty 
Quantification
• Understanding how to 

include UQ in deep ML 
models

• Critical to include out-
of-distribution 
uncertainties

• Incorporate auto-
calibration



Particle identification for SoLID with uncertainty 
quantification
• The initial goal was to achieve >95% 

pion efficiency while keeping false 
positive below 5%

• Distance aware model provides 
uncertainty values associated with 
each output

• We are able to achieve the initial 
goal on the most difficult kinematic 
and smallest resolution readout

• With increase in the resolution using 
other readouts, we believe it is 
possible to further improve the 
efficiency

• Performing hyper parameter 
optimization can potentially improve 
the accuracy of the model



Uncertainty quantification for accelerator anomaly 
detection at SNS ORNL
• Results from similarity model showed a ~4x improvement in performance over 

previously published results
• The ROC curve shows nearly the same level of performance (not optimized)
• We introduced an out-of-domain anomaly, labelled 1111 (red), the UQ-based 

model correctly identified the anomaly and indicated high uncertainty.



Uncertainty quantification for surrogate models 
in risk averse control research
• Quantile regression method have great performance in the training distribution and are 

calibrated by definition, however, the do not perform well for OOD estimation
• BNN models provides does a better job to estimate OOD but require calibration
• GP approximation model provide the best OOD estimation and is calibrated by design

BNN model Our modelQR model



Interpretability,  Explainability, 
and Robustness
• Applying and developing techniques to better understand 

model predictions and stability
• Gradient activation studies to understand what the model 

is focusing on
• Loss landscape analysis to better understand the model 

stability

Loss Landscape for FNAL system dynamic model



Application at SNS ORNL
• Applied GradCAM analysis on trained ML-based model for errant 

beam prediction
• Identifies sections of the waveform most relevant for a particular 

decision from the model
• The results can potentially identified fault types by exploring results



Design & Control
• Advance applications for 

design & control
• Bayesian Optimization
• Risk Averse and UQ aware 

Reinforcement Learning



Near real-time control and calibration for the GlueX
Central Drift Chamber
Accelerate the calibration from month(s) to minute(s).

1. Gain Correction Factor: CDC Voltage Gain calibration
2. Time to Distance: track fitting calibration

Calibration is required to provide reliable PID for physics analysis
Considerations:

1. External environmental conditions (temperature, pressure)
2. Changing beam conditions (current)



Stabilizing Gain in the Central Drift Chamber

Schematic of downstream view of CDC, with 
straws HV control status indicated.

• Peak heights from Gaussian Process 
side of the CDC show dramatic 
reduction in pressure dependence 
compared to constant HV



Considering UQ for control decisions 

• We don’t not want to adjust high 
voltage to an "uncertain" value

• Gaussian Process provides uncertainty 
quantification

• Only apply a new calibration if the 
uncertainty is within the 3% of ideal 
gain correction factor otherwise, 
we extract to the closest prediction 
within tolerance

• This method will be implemented in 
the upcoming GlueX CPP run

Input dimensions, the standard deviations of 
the predicted gain correction factor (GCF) 
within 3% of ideal GCF.



Multi-objective optimization for CEBAF

• SRF Cavities accelerate electrons via an RF standing wave 

• Current method to set the cavity gradients

o Fitting gradients vs fault rates on historical data

o Heat generated by RF power input to the cavities is 

ignored

• Leads to higher heat load and trip rates.
• This problem is faced by all the SRF based accelerator facilities 

including JLab, SNS, FRIB, and LCLS II at SLAC, if the gradients are 
not optimal.

Suboptimal



Multi-objective optimization for CEBAF
• Dynamic problems need dynamic solutions.

• Reinforcement Learning (RL) is a perfect fit and is proven to 
work well on optimization problems. 

Historical 
Data

Surrogate of 
CEBAF linacs

A surrogate model 
for each cavity with 

uncertainty 
quantification

Transfer Learning

AGENT 
Calibrate/monitor online

SET OPTIMIZED GRADIENTS

Critical components

•Multi objective optimization: getting 
optimal set of gradients that minimizes 
both trips and heat

•Q-modeling: The ideas was to account 
for the Q0 dynamics with gradients 
within the surrogate models



Combining research 
efforts into a 
grander workflow

• Implement UQ methods at every level to 
understand what we don’t understand

• Incorporate interpretability,  explainability, 
and robustness to provide stable solutions

• Integrate into design & controls workflows to 
ensure optimization is within our knowlegde



Applying data 
science workflow to 
Health and Climate 
Studies
• Collected multi-modal data. of 

the Norfolk area
• Develop multi-modal digital model 

of the Norfolk area
• Apply UQ and constraints methods

• Provide decision policy based on 
research topic

Norfolk Area

Constraints

Health 
Measurement

Environment
Measurement

Data Quality and Feature Engineering

Health & 
Climate 

Disparity

Uncertainty 
Quantification

Health 
& Climate 

Trends

Operations and 
Decision Making



Final Remarks
• Cris Fanelli is the latest member of the team 
• New bridge position between W&M and 

Jlab
• Diana McSpadden
• Nikhil Kalra
• Two new postdocs
• Yasir Alannazi
• Abdullah Farhat

Hiring a new postdoc now

Contributed to several AI related workshops:
• JLab Experimental Hall Townhall
• JLab accelerator Townhall
• AI4EIC workshop
• AI@DOE workshop
• AI for Science and Security workshop
• AIRES 
• Etc.

We are involved in several projects at JLab:
• Experimental Hall
• Theory 
• Accelerator 

We also have several projects outside of NP 
We are always looking to collaborate.

Please contact us.



AI4EIC: Upcoming Event 

AI4EIC   https://eic.ai/events ai4eic.slack.com      
ECCE AI WG ecceaiwg.slack.com

https://indico.bnl.gov/event/16073/

https://eic.ai/events

