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Data Science at
Jefferson Lab

Mission:

* Provide world-class data science solutions to advance research in nuclear physics by working with the subject
matter experts at Jefferson Lab, partnering Universities and Labs, and the Department of Energy.

* Provide world-class data science solutions to scientific applications relevant to the regional scientific community
Vision:

e Expand the capability and capacity of data science at JLab

* Create a collaborative data science research hub to:

1. Provide world-class solutions to scientific challenges ij;l‘
2. Provide real-time optimization solutions for complex system ‘“’T'
3. Champion education and research opportunities with regional Universities and industry ‘f

4. Reduce the carbon footprint by optimizing the data science workflow and algorithms
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FY22 LAB S&T Agenda, Milestones —

y

Data Science & Al/ML =

Overall Goals:

« Establish JLab as the data science hub for nuclear physics and
regional scientific applications

» Develop a core capability targeting key elements of the Basic
Research Needs (BRNs) defined in the SciML report, etc.

» Provide education and research opportunities to regional
universities and industries

Yearly Activities and Milestones:

» Participate in HEP, NP, ASCR, and SciDAC proposal calls
(expand as opportunities become available)

« Participate in DOE data science related workshops and BRN
reports

« Continuously reevaluate based on State of the Art (SOTA)

« Expand scientific applications and collaborations

FY22:

Establish a data science priority research needs and data availability
for JLab:

« Experimental Halls, Theory, Accelerator, and Facilities
Establish collaborations with regional universities and national laboratories

Develop core capabilities:
— Infrastructure:
 Evaluate latest SOTA workflow tools for data science
» Evaluate datasets and model repositories
+ |dentify/evaluate needs for digital twin
— Methods & Algorithms (addressing the needs of the SciML BRN):

» Expand capability in ML-based uncertainty quantification
techniques

» Develop interpretability techniques
» Expand optimization research for design and control

 Domain-aware ML
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Data Science Pillars

* Applications:
* NP physics
e Advanced computing
* Health & Climate

* Focued Methods & Algorithms:
* Uncertainty Quantification
* Interpretability and Explainability
* Design & Control

* Infrastructure:
e JLab ML Hub
e JLab Data Hub
* JLab Data Science software




Data Science Infrastructure

MLflow Tracking

MLflow Projects
_J

MLflow Models
J

MLflow Registry
\

Record and query
experiments: code,
data and results.

~N

Package data
science code in a
format to reproduce
runs on any
platform

Deploy machine
learning models in
diverse serving
environments

-

Store, annotate,
discover and.
manage models in a

central repository




JLab ML Hub

* Developing a service for model optimization and curation
* Leveraging and extending MLFLOW

e Support machine learning "experiments":
* Hyperparameter search
* Model comparison (visualization, etc.)

 Store Models for reuse
* Centralized model registry and repository
* Versions
* Searchable by model characteristics and requirements

Accuracy by learning rate

e Extension captures JLab specific domain metadata and access control policies
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Data Science Methods
& Algorithms

Domain-aware physical principles & symmetries
s ci M I- leveraging & respecting physics-infonjn_ed priors
. scientific domain knowledge structure-exploiting models
Foundations :

model selection
exploiting structure in high-dim data
uncertainty quantification + ML

Machine
Learning
for Advanced
Scientific
Computing
Research

Interpretable

explainable & understandable results

Robust probabilistic modeling in ML
stable, well-posed & quantifying well-posedness
reliable formulations reliable hyperparameter estimation

Figure 1: Foundational research themes of SciML must tackle the challenges of creating domain-
aware, interpretable, and robust ML formulations, methods, and algorithms.

Data-intensive
scientific inference & data analysis

Machine ML-enhanced
modeling & sim

Learnlng ML-hybrid algorithms and models
for Advanced for better scientific computing tools

Scientific
Computing Intelligent automation
Research & decision support

automated decision support,
adaptivity, resilience, control

Figure 2: Opportunities for SciML impact arise in scientific inference and data analysis; in ML-
enhanced modeling and simulation; in intelligent automation and decision support; and in related
applications.




Lompression

Discovery Classification

Big data

Machine Learning .o

Feature Idenity Fraud

. Dia
Elicitation Detection

* Machine learning is a field focused on
understanding and building methods that
'learn’ a set of tasks

* There are a wide range of techniques

* Selection depends on the available data

Targetted
Marketing

Population
Growth
Prediction

Customer
Segmentation

Real-time decisions Game Al

Robot Navigation Skill Acquisition



[ ]
Uncertaint
. VIMIN data .\ . « —— I

.
o

Anomaly Type #3

—— IMINER data \
Q t i fi C t i 2| === IMINER prediction + 1sigma i iiil
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* Understanding how to
include UQ in deep ML
models

e Critical to include out-
of-distribution
uncertainties

* |Incorporate auto-
calibration
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Particle identification for SoLID with uncertainty
guantification

 The initial goal was to achieve >95%
pion efficiency while keeping false
positive below 5%
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» Distance aware model provides
uncertainty values associated with
each output

Train set AUC:0.9907
| Val set AUC:0.9884

Pion detection rate (with uncertainty band)

» We are able to achieve the initial 00 02 04 06 08 10 . = " O'GTeSt SetA:jO'%%
goa| on the most dlﬁlCUlt kinematic Classifier Output False Positive Rate (Kaons identified as Pions)
and smallest resolution readout Val set

 With increase in the resolution using E——

other readouts, we believe it is
possible to further improve the
efficiency

« Performing hyper parameter
optimization can potentially improve
the accuracy of the model
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Uncertainty quantification for accelerator anomaly
detection at SNS ORNL

e Results from similarity model showed a ~“4x improvement in performance over
previously published results

e The ROC curve shows nearly the same level of performance (not optimized)

e We introduced an , labelled 1111 (red), the UQ-based
model correctly identified the anomaly and indicated high uncertainty.

e Normal
Anomaly (1100)
® Anomaly (1111)
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Uncertainty quantification for surrogate models
in risk averse control research

* Quantile regression method have great performance in the training distribution and are
calibrated by definition, however, the do not perform well for OOD estimation

 BNN models provides does a better job to estimate OOD but require calibration

* GP approximation model provide the best OOD estimation and is calibrated by design
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Interpretability, Explainability,
and Robustness

* Applying and developing techniques to better understand
model predictions and stability

e Gradient activation studies to understand what the model
is focusing on

* Loss landscape analysis to better understand the model
stability

Loss Landscape for FNAL system dynamlc model

1wttt shop ooz ctie

Figare 1D ‘The loss surtoces obf ResNet 30 with'withowr skip connectors.  The proposed hilter
nonsalization scheme is usad o crmhle comparswos of shargaesallanness haoweaen the two figues



Application at SNS ORNL

e Applied GradCAM analysis on trained ML-based model for errant
beam prediction

* |dentifies sections of the waveform most relevant for a particular
decision from the model

* The results can potentially identified fault types by exploring results

gradCAM heatmap
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Design & Control

Function
- Initial Random Sampling

. . Ugi::,m::x::: Optimization == /ﬂ\/ \
Advance applications for Process |

design & control

Bayesian Optimization
Risk Averse and UQ aware Model iting
Reinforcement Learning S

Historical Digital Reinforcement ;‘;’32;
Data Model Learning .
(baseline)

Transfer Learning

ENVIRONMENT Frome N\ Reintorcement N Cllorated
| Learning Model
GPU ode.

STATE, REWARD




Near real-time control and calibration for the GlueX

Central Drift Chamber

Accelerate the calibration from month(s) to minute(s).

1. Gain Correction Factor: CDC Voltage Gain calibration

2. Time to Distance: track fitting calibration
Calibration is required to provide reliable PID for physics analysis
Considerations:

1. External environmental conditions (temperature, pressure)

2. Changing beam conditions (current)
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Stabilizing Gain in the Central Drift Chamber

of the CDC show dramatic
reduction in pressure dependence
compared to

Schematic of downstream view of CDC, with
straws HV control status indicated.




Considering UQ for control decisions

* We don’t not want to adjust high
voltage to an "uncertain" value

* Gaussian Process provides uncertainty
guantification

* Only apply a new calibration if the
uncertainty is within the 3% of ideal
gain correction factor otherwise,
we extract to the closest prediction
within tolerance

* This method will be implemented in
the upcoming GlueX CPP run

Input dimensions, the standard deviations of
the predicted gain correction factor (GCF)
within 3% of ideal GCF.
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Multi-objective optimization for CEBAF

* SRF Cavities accelerate electrons via an RF standing wave
* Current method to set the cavity gradients
o Fitting gradients vs fault rates on historical data

o Heat generated by RF power input to the cavities is

ignored
Suboptimal

* Leads to higher heat load and trip rates.

* This problem is faced by all the SRF based accelerator facilities
including JLab, SNS, FRIB, and LCLS Il at SLAC, if the gradients are
not optimal.




Multi-objective optimization for CEBAF ACTON

* Dynamic problems need dynamic solutions.

e Reinforcement Learning (RL) is a perfect fit and is proven to

ENVIRONMENT

work well on optimization problems. 4 |
STATE, REWARD

A surrogate model
e for each cavity with Surrogate of
Historical . .
Data LIEE Y CEBAF linacs
e Critical components

*Multi objective optimization: getting
ACTION ACTION optimal set of gradients that minimizes

| _t both trips and heat
STATE,REWARD Q

AGENT ENVIRONMENT *Q-modeling: The ideas was to account
~ AGENT STATE REWARD for the Q0 dynamics with gradients
Calibrate/monitor online L
within the surrogate models




Combining research
efforts into a
grander workflow

* Implement UQ methods at every level to
understand what we don’t understand

* |Incorporate interpretability, explainability,
and robustness to provide stable solutions

* Integrate into design & controls workflows to
ensure optimization is within our knowlegde

Control
actions Data generation

Provide new actions Simulation and/or sensor data
for the system to Initial state or updated state based on
perform new actions

Data processing
Al-based policy

Data cleaning, re-structuring, etc
model 9 ‘

Continuous training/validating ML-based augmented
policy model state representation
(optional)
Enhance the state space
representation using ML encoding,

e.g. anomaly detection input, domain-
aware models, etc.)
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Health and Climate
Studies

* Collected multi-modal data. of
the Norfolk area
* Develop multi-modal digital model =
of the Norfolk area Health Environment
* Apply UQ and constraints methods Measurement Measurement

* Provide decision policy based on
research topic

10 20 30 40 50 60

Health & Health
Climate & Climate
Disparit Trends

Data Quality and Feature Engineering




Final Remarks

_1N

Cris Fanelli is the latest member of the team

* New bridge position between W&M and
Jlab

Diana McSpadden
Nikhil Kalra

Two new postdocs
e Yasir Alannazi
 Abdullah Farhat

Contributed to several Al related workshops:
* JLab Experimental Hall Townhall

_-,-,.~‘ * JLab accelerator Townhall

e AI4EIC workshop
« AI@DOE workshop
e Al for Science and Security workshop
* AIRES
. Etc.
[ EEERE e e RS O SR B
We are mvolved in several pro;ects at JLab:
* Experimental Hall
 Theory
* Accelerator
We also have several projects outside of NP
We are always looking to collaborate.
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AI4EIC: Upcoming Event

Al4EIC https://eic.ai/events aideic.slack.com
ECCE Al WG ecceaiwg.slack.com

EIC Software: Al WG Meeting
Wednesday 22 Jun 2022,09:00 — 11:05 us/Eastern https://indiCO.bnl.gOV/event/1 6073/

Description  This meeting is topic-oriented and fo on uncertainty quantification
Il use Zoom for the

Meeting ID: 1614875

AI4EIC - October 10-14, 2022

[LXUN — 09:05 Introduction
Speakers ano Fanelli , Tanja Horn

2nd General Workshop on Artificial Intelligence for the Electron lon Collider
Venue: William and Mary

(XM — 09:30 Uncertainty aware ML-based models for accelerator studies (Anomaly detection and surrogate model for RL)

Contacts:

ort@eic.ai

[LRXUM — 10:05 Uncertainty Quantification for Machine Learning Applied to Data Analysis

Speaker: Benjamin Nachman

Inverse problems in nuclear tomography
Speaker: Nobuo Sato

(X — 11:00 Final Discussion



https://eic.ai/events

