A measurement of the **Neutron Spin Structure at** High-x in the 12 GeV Era

UJLUO

William Henry On behalf of the E12-06-110 Collaboration

June 13th, 2022

Nucleon Spin Crisis and Sum Rule

Designed by Z.-E. Meziani

Nucleon spin sum rule: (Jaffe & Manohar) $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$ quark gluon quark gluon intrinsic intrinsic OAM OAM spin spin

- Ellis and Jaffe (1974) predicted a ~58% contribution from the valence quark intrinsic spin which early SLAC experimental data supported.
- The EMC collaboration (1988), and later SLAC E142, E143, and CERN's SMC found $\Delta\Sigma$ to be $12\% \pm 17\%$
- The disagreement between experiment and theory is know as the Nucleon Spin Crisis
- Current measurements show $\Delta\Sigma = 30\% 35\%$ [22] and $\Delta G = ~20\%$ [25]

Accessing Spin Structure: Polarized DIS cross sections

U:
$$\frac{d^2\sigma}{d\Omega dE'} = \frac{\alpha^2}{4E^2 \sin^4\left(\frac{\theta}{2}\right)} \left(\frac{2}{M}F_1(x,Q^2)\sin^2\left(\frac{\theta}{2}\right) + \frac{1}{\nu}F_2(x,Q^2)\cos^2\frac{\theta}{2}\right)$$

$$\mathbf{P}: \quad \frac{d^2\sigma}{d\Omega dE'}(\mathbf{1}^{\uparrow}-\mathbf{1}^{\uparrow}) = \frac{4\alpha^2 E'}{MQ^2 \nu E} \left[(E+E'\cos\theta)g_1(\mathbf{x},\mathbf{Q}^2) - \frac{Q^2}{\nu}g_2(\mathbf{x},\mathbf{Q}^2) \right] = \Delta\sigma_{\parallel}$$

$$\frac{d^2\sigma}{d\Omega dE'}(\downarrow \Rightarrow -\uparrow \Rightarrow) = \frac{4\alpha^2 \sin\theta E'^2}{MQ^2 \nu^2 E} \left[\nu g_1(x, Q^2) + 2E\right]$$

 $Q^2 = 4EE'\sin^2(\theta/2)$ $\nu = E - E'$ $W = M^2 + 2M\nu - Q^2$ θ $x = Q^2/2Mv$

4-momentum transfer Energy transfer Final state hadronic mass Scattering angle Quark fractional momentum

Credit Slide: Melanie Cardona (Rehfuss)

JLUO 2022 Users Group Meeting

 $[g_2(x,Q^2)] = \Delta \sigma_\perp$

Quark Parton Model:

• $F_1(x) = \frac{1}{2} \Sigma e_i^2 [q_i^{\uparrow}(x) + q_i^{\downarrow}(x)]$ where $q_i(x) = q_i^{\uparrow}(x) + q_i^{\downarrow}(x)$ is the probability of finding a quark q of flavor *i* with momentum fraction x

• $g_1(x) = \frac{1}{2} \Sigma e_i^2 [q_i^{\uparrow}(x) - q_i^{\downarrow}(x)]$

where $\Delta q_i(x) = q_i^{\uparrow}(x) - q_i^{\downarrow}(x)$ is the sum over the helicity distribution for a quark q of flavor *i* with momentum fraction x

Hadrons E ν, Q^2 W nucleon E

 $g_2(x)$ describes the transverse spin structure of the nucleon, which vanishes in the QPM (quark-gluon correlations)

Accessing Spin Structure: polarized DIS cross sections

U:
$$\frac{d^2\sigma}{d\Omega dE'} = \frac{\alpha^2}{4E^2 \sin^4\left(\frac{\theta}{2}\right)} \left(\frac{2}{M}F_1(x,Q^2)\sin^2\left(\frac{\theta}{2}\right) + \frac{1}{\nu}F_2'\right)$$

P:
$$\frac{d^2\sigma}{d\Omega dE'}(\downarrow\uparrow\uparrow\uparrow\uparrow\uparrow) = \frac{4\alpha^2 E'}{MQ^2\nu E} \left[(E + E'\cos\theta)g_1(x,Q^2) \right]$$

$$\frac{d^2\sigma}{d\Omega dE'}(\downarrow \Rightarrow -\uparrow \Rightarrow) = \frac{4\alpha^2 \sin\theta E'^2}{MQ^2 \nu^2 E} \left[\nu g_1(x, Q^2) + 2E\right]$$

 $Q^2 = 4EE'\sin^2(\theta/2)$ $\nu = E - E'$ $W = M^2 + 2M\nu - Q^2$ θ $x = Q^2/2M\nu$

4-momentum transfer Energy transfer Final state hadronic mass Scattering angle Quark fractional momentum

Credit Slide: Melanie Cardona (Rehfuss)

The Observable A1: The Virtual Photon-nucleon Asymmetry

For large
$$Q^2$$
, $A_1 \approx g_1(x)/F_1(x)$

Our wide Q² range (over 10 GeV²) will allow for further study of
A'₁s Q² – dependence @ a given x value in the valence region

Slide Credit: Melanie Cardona (Rehfuss)

JLUO 2022 Users Group Meeting

• We need a transverse and longitudinal component to reconstruct the asymmetry along the virtual photon direction:

$$A_{\parallel} = \frac{\sigma^{\downarrow\uparrow} - \sigma^{\uparrow\uparrow}}{\sigma^{\downarrow\uparrow} + \sigma^{\uparrow\uparrow\uparrow}} \quad \text{and} \quad A_{\perp} = \frac{\sigma^{\downarrow\Rightarrow} - \sigma^{\uparrow\Rightarrow}}{\sigma^{\downarrow\Rightarrow} + \sigma^{\uparrow\Rightarrow}}$$
$$\rightarrow \quad A_{1} = \frac{A_{\parallel}}{D(1 + \eta\xi)} - \frac{\eta}{d(1 + \eta\xi)}$$

- σ^{↓↑}(σ^{↑↑}) is the cross section for a longitudinally polarized target with the electron spin aligned antiparallel (parallel) to the target spin
- $\sigma^{\downarrow \Rightarrow}(\sigma^{\uparrow \Rightarrow})$ is the cross section for a transversely polarized target with the electron spin aligned antiparallel (parallel) to the beam direction
- η, ξ , and *d* are kinematic factors, and *D* depends on the ratio of the longitudinal and transverse virtual-photon absorption cross sections $R = \sigma_L / \sigma_T$

A1n at High-x: Predictions from various models

Credit Slide: Melanie Cardona (Rehfuss)

JLUO 2022 Users Group Meeting

The valence domain (x > 0.5):

- Free of sea effects ($q\bar{q}$ pairs and hard gluons)
- Spin is assumed to be carried by the valence quarks

→ A poorly-explored region due to low rates at high x (need high luminosity, Hall C's 12 GeV-era polarized ³He target reached $2x10^{36}$ cm⁻²s⁻¹!)

• Which models will our data agree with? How much of a role does L_q play in forming the nucleon spin?

	$rac{F_2^n}{F_2^p}$	$\frac{d}{u}$	$\frac{\Delta d}{\Delta u}$	$\frac{\Delta u}{u}$	$\frac{\Delta d}{d}$	A_1^n	A_1^p
DSE-1	0.49	0.28	-0.11	0.65	-0.26	0.17	0.59
DSE-2	0.41	0.18	-0.07	0.88	-0.33	0.34	0.88
$0^{+}_{[ud]}$	$\frac{1}{4}$	0	0	1	0	1	1
NJL	0.43	0.20	-0.06	0.80	-0.25	0.35	0.77
SU(6)	$\frac{2}{3}$	$\frac{1}{2}$	$-\frac{1}{4}$	$\frac{2}{3}$	$-\frac{1}{3}$	0	$\frac{5}{9}$
CQM	$\frac{1}{4}$	0	0	1	$-\frac{1}{3}$	1	1
pQCD	$\frac{3}{7}$	$\frac{1}{5}$	$\frac{1}{5}$	1	1	1	1

Table 1: Selected predictions for the x = 1 value of the indicated quanti-

C. Roberts, R.Holt, S. Schmidt, Phys. Lett. B 727 (2013) 249. arxiv: 1308.1236

Polarized PDFs at High-x: Predictions from various models

JLUO 2022 Users Group Meeting

$$\frac{\Delta u + \Delta \bar{u}}{u + \bar{u}} = \frac{4}{15} \frac{g_1^p}{F_1^p} (4 + R^{du}) - \frac{1}{15} \frac{g_1^n}{F_1^n} (1 + 4R^{du})$$
$$\frac{\Delta d + \Delta \bar{d}}{d + \bar{d}} = \frac{-1}{15} \frac{g_1^p}{F_1^p} (1 + \frac{4}{R^{du}}) + \frac{4}{15} \frac{g_1^n}{F_1^n} (4 + \frac{1}{R^{du}})$$

D. Parno et al.

PRL 113 (2014) 2, 022002, 1404.4003

X. Zheng et al.

PRL 92 (2004) 012004, arXiv: nucl-ex/0308011;

PRC 70 (2004) 065207, arXiv: nucl-ex/0405006.

Polarized Helium 3 as an effective polarized neutron target

- Polarized target for study the spin structure of nucleon.
- Free neutron mean lifetime: 880.2 s.
- The unpaired neutron carries the majority of the ³He nucleus polarization.
- Polarized ³He is a good effective polarized neutron target.

Slide Credit: Mingyu Chen

12 GeV Polarized Helium 3 Target

- increase in FOM

E12-06-110 in Hall C: Experimental Setup

- Experiment ran from January 12th to March 13th, 2020
- Polarized Helium-3 gas target
- 10.4 GeV Polarized e- beam
- Inclusive measurement, detected scattered e-
- SHMS: 30°; P_{Central}=2.6 & 3.4 GeV
- HMS: 30 °; P_{Central}=2.9 & 3.5 GeV
- Elastic and $\Delta(1232)$ asymmetry measured to check sign of $P_{Beam}P_{Target}$

Helium 3 Target Polarization

- Target polarization was routinely measured using NMR and pNMR measurments.
- More details in next talk by Junhao Chen

JLUO 2022 Users Group Meeting

• EPR measurements provided absolute measurements and was used to calibrate NMR and pNMR measurements.

Hall C Spin Dance

Beam and Target Polarization Sign Convention Checks

- Elastic and $\Delta(1232)$ asymmetry measured to check sign of $P_{Beam^*}P_{Target}$
- Target spin direction set by holding field (90° or 180°)
- "Slow" reversal of electron polarization by IHWP and Wein-Flip

SHMS Delta Runs

JLUO 2022 Users Group Meeting

SHMS Elastic Runs

Neutron Spin Structure

Preliminary A₁ (3He) Result

$$A_{raw} = \frac{\frac{N^{+}}{Q^{+}\eta^{+}} - \frac{N^{-}}{Q^{-}\eta^{-}}}{\frac{N^{+}}{Q^{+}\eta^{+}} + \frac{N^{-}}{Q^{-}\eta^{-}}},$$

 $N^{\pm} \sim$ helicity-sorted counts Q^{\pm} ~ integrated beam charge $\eta^{\pm} \sim \text{DAQ}$ live-time

$$A_{phys} = \frac{A_{raw}}{P_b P_t f_{N_2}}$$

 $P_b \sim \text{Beam polarization} \sim 85\%$ $P_t \sim {}^{3}\text{He} \text{ target polarization} \sim 50\%$ $f_{N_2} \sim \text{Nitrogen dilution factor} \sim 0.92$

Figure Credit: Mingyu Chen

Neutron Spin Structure

Preliminary A₁ (3He) Result

JLUO 2022 Users Group Meeting

Neutron Spin Structure

E12-06-110 is a high-impact experiment on nucleon spin-structure

- The measurements of A_1^n at high x allow • us to test fundamental predictions of the nucleon spin structure
- Combined with precision proton data, the • high-precision neutron data will allow us to extract polarized-to-unpolarized quark PDF ratios distributions (Δq) and spinflavor distributions ($\Delta u/u$) and ($\Delta d/d$)

The results will help answer questions like, How much of a role does L_q play? (to what degree are the quarks' spin aligned parallel to the nucleon spin?)

D. Androic, W. Armstrong, T. Averett, X. Bai, J. Bane, S. A.I. Alikhanian National Science Laboratory; Argonne Barcus, J. Benesch, H. Bhatt, D. Bhetuwal, D. Biswas, A. National Laboratory; Artem Alikhanian National Camsonne, G. Cates, J-P. Chen, J. Chen, M. Chen, C. Cotton, Laboratory (AANL).; Christopher Newport University; M-M. Dalton, A. Deur, B. Dhital, B. Duran, S.C. Dusa, I. Duke University; Florida International University; Fernando, E. Fuchey, B. Gamage, H. Gao, D. Gaskell, T.N. Hampton University ; James Madison University ; Gautam, N. Gauthier, C.A. Gayoso, O. Hansen, F. Jefferson Lab; Kent State University; Mississippi State Hauenstein, W. Henry, G. Huber, C. Jantzi, S. Jia, K. Jin, M. University; Ohio University; Old Dominion University; Jones, S. Joosten, A. Karki, B. Karki, S. Katugampola, S. Kay, Rutgers University; Syracuse University; Temple C. Keppel, E. King, P. King, W. Korsch, V. Kumar, R. Li, S. Li, University; The College of William and Mary; Univ. of W. Li, D. Mack, S. Malace, P. Markowitz, J. Matter, M. Ljubljana; University of Connecticut; University of McCaughan, Z-E. Meziani, R. Michaels, A. Mkrtchyan, H. Kentucky; University of Kentucky; University of New Mkrtchyan, C. Morean, V. Nelyubin, G. Niculescu, M. Hampshire; University of Regina; University of Niculescu, M. Nycz, C. Peng, S. Premathilake, A. Puckett, A. Tennessee; University of Virginia; University of Virginia; Rathnayake, M. Rehfuss, P. Reimer, G. Riley, Y. Roblin, J. University of Zagreb Roche, M. Roy, M. Satnik, B. Sawatzky, S. Seeds, S. Sirca, G. Smith, N. Sparveris, H. Szumila-Vance, A. Tadepalli, V. Tadevosyan, Y. Tian, A. Usman, H. Voskanyan, S. Wood, B. Yale, C. Yero, A. Yoon, J. Zhang, Z. Zhao, X. Zheng, J. Zhou

PhD Candidates

Slide Credit: Melanie Cardona (Rehfuss)

JLUO 2022 Users Group Meeting

People

Institutions

Spokespeople

