

Validation of neutrino energy estimation using electron scattering data

Mariana Khachatryan

Far detector

T2K experiment L=295km

True flux from measured flux and modeling input. Models are phenomenological, semi-classical (no interference) implemented in **Neutrino Event Generators.**

Electron for neutrinos

Measured vinteraction rate Incoming true flux Modeling input $N_{\alpha}(E_{rec}, L) \propto \sum_{i} \int \Phi_{\alpha}(E, L)\sigma_{i}(E) f_{\sigma_{i}}(E, E_{rec}) dE$

Use electron scattering data to constrain neutrino event generators

- GENIE v3! Papadopoulou et al, Phys. Rev. D 103, 113003 (2021)
 - Unified eA and vA code
 - Implement better models and theories
 - Two GENIE tunes: SuSAv2 vs G2018
 - Electron radiative corrections

Why electrons?

- Known incident energy
- High intensity
- Similar interaction with nuclei
 - Single boson exchange
 - EM current [vector]

•
$$j^{em}_{\mu} = \bar{u} \gamma^{\mu} u$$

CC Weak current [vector plus axial]

•
$$j_{\mu}^{\pm} = \overline{u} \frac{-ig_W}{2\sqrt{2}} (\gamma^{\mu} - \gamma^{\mu}\gamma^5) u$$

• Similar nuclear reaction effects

Quasielastic (QE) scattering from a single nucleon

Nuclear Physics

What neutrino expts want

Targets and beam energies

CLAS E2a (April/May 1999),

- standard inclusive e- trigger
- **Energies**: 1.16, 2.26 and 4.45 GeV
- **Targets**: ³He, ⁴He, ¹²C, ⁵⁶Fe

Neutrino targets:

Water, argon, scintillant (H, C, O, Ar)

Neutrino beam energies

CLAS

- Large ($\sim 2\pi$) acceptance
- Charged particle thresholds similar to neutrino tracking detectors:
 - P_p > 300 MeV/c
 - P_{π+/-} > 150 MeV/c
- γ threshold $E_{\gamma} > 300$ MeV

Data analysis

- Reconstruct E_{lepton}
 - Cherenkov detectors: e⁻ parameters only

$$E_{QE} = \frac{2M\varepsilon + 2ME_l - m_l^2}{2(M - E_l + |k_l|\cos(\theta_l))}$$

- ε =average nucleon separation energy
- ➤ Tracking detectors: e⁻ and p

- Select zero π/γ events to enhance the QE sample
 - two event sets (e,e') and (e,e'p)
 - > subtract for undetected π/γ and p
- Weight by Q^4 to account for photon propagator
- Correct for electron radiation and CLAS acceptance
- Extract Cross Section
- Compare to e-GENIE simulation predictions

Background Subtraction

Want 0π event sample (e,e') background: undetected pions and photons (e,e'p) background: undetected pions, photons and extra protons

Data Driven Correction:

1. Use measured (e,e'p π/γ) events,

2. Rotate π or γ around **q** to determine its acceptance,

3. Subtract (e,e'p π/γ) contributions

4. Do the same for 2p, 3p, 2p+ π etc.

(e,e') energy reconstruction

Consider two "tunes" of GENIE models for QE and MEC:

- **G2018** (Rosenbluth cross section and Local Fermi Gas + empirical Dytman model of MEC)
- **SuSAv2**(theoretically-inspired, follows the universal SuSAv2 super-scaling approach to lepton scattering and Relativistic Mean Field theory for nuclear ground state)
- Common RES and DIS: Berger-Sehgal + Bodek and Yang
- Similar FSI

SuSAv2

- Correct peak width
- Incorrect cross section G2018
- peak too narrow
- Incorrect cross section

(e,e'p) calorimetric energy

e-GENIE overpredicts the % of events in the peak G2018:

- reconstructs the peak position to be 25 MeV too low
- describes tail relatively well

M.Khachatryan, A.Papadopoulou, et al. Nature 599, no.7886, 565-570 (2021)

13

A and E dependence

- Data/MC disagreement
- Worse at higher E
- Due to RES and DIS

A and E dependence

Nature 599, no.7886, 565-570 (2021)

Missing perpendicular momentum (P_T)

Summary

- 1. Neutrino oscillation measurements are important
- 2. Extracting oscillation parameters depends on knowledge of vA interactions
- 3. First test of beam energy reconstruction showed serious problems:
 - most 1p0pi events reconstructed to the wrong energy
 - models failed to predict data
- 4. More results coming:
 - more channels
 - dedicated CLAS12 data
- 5. Large $e4\nu$ collaboration using this data to improve νA modeling

Thank you for your attention!

The current knowledge on neutrinos oscillation parameters in the three neutrino framework

What is known:

The mixing angles θ_{ij} and mass splittings Δm_{ij}^2 .

Fundamental open questions:

- The mass hierarchy
- $(m_1 < m_2 < m_3 (\text{NH}) \text{ or } m_3 < m_1 < m_2 (\text{IH}) ?)$

The value of CP violation phase δ_{CP} . u_{μ} CC evts/GeV/10kt/MW.yr

 \Rightarrow need improved measurements of the mass splittings and mixing angles.

0

(Long Baseline) Oscillation Challenge

=> Incorrect neutrino-nucleus interaction modeling can bias the extracted oscillation parameters

Events created with GiBUU and reconstructed with GiBUU and GENIE.

Biggest systematic uncertainties due to neutrino interactions.

Cross section systematics

Xsec uncertainties	$ u_{\mu}$ disap.	$ u_e$ app.	
T2K	±5.0%	<u>+</u> 4.7%	Phys. Rev. D 91 , 072010
NOvA		±7%	Matthew Muether. 2015. Nuln

A and E dependence

Sources of uncertainty

- Statistical uncertainty is shown by error bars.
- Uncertainties of the weights for subtraction of undetected π and protons.
 - \diamond Systematic uncertainty due to the ϕ -dependence of the pion cross section modeled and found to be negligible (less than 1%).
 - ♦ Rotate (e,e' π) events enough times to reduce statistical uncertainty below 1%.
 - \diamond Systematic uncertainty due to imperfect description of the geometrical acceptance.
 - \diamond Systematic uncertainty due to γ ID (missing γs and n contamination).

E [GeV]	Uncertainty due to							
	arphi dep.	Imperf. accept. In subtraction	γ ID cut	Cross section overall normalization from H(e,e')	CLAS sector-to- sector variation of cross section	CLAS acceptance correction		
1.1	1%	0.8%	0.1%	3%	6%	Up to 4%		
2.2	1%	1.2%	0.5%	3%	6%	Up to 13%		
4.4	1%	4%	2%	3%	6%	Up to 12%		

Radiation and reabsorption of a virtual photon (vertex correction) Virtual pair production by the exchanged photon (vacuum polarization)

Radiation of real photon either before or after

Up to 15% of $\rm E_{e\text{-}}$

Radiative Corrections to Single Photon Exchange

Phi dependence

Cross section for unpolarized pion electroproduction on a single nucleon:

Where p_{π}^* , θ_{π} and φ_{π} are the momentum, scattering and azimuthal angles of the π^0 in the CM frame. Jacobian $J=\partial(Q^2, W)/\partial(E', \cos\theta_e, \theta_e)$, Γ_v is virtual photon flux.

N. Markov et al. arXiv:1907.11974

Weight without φ_{π} dependence

$$W = \frac{\sum_{i=1}^{N_{\text{Undet}}} 1}{\sum_{i=1}^{N_{\text{Det}}} 1}$$

Weight with φ_{π} dependence

$$V = \frac{\sum_{i=1}^{N_{\text{Undet}}} 1 + B/A \cos \phi_{\pi} + C/A \cos 2\phi_{\pi}}{\sum_{i=1}^{N_{\text{Det}}} 1 + B/A \cos \phi_{\pi} + C/A \cos 2\phi_{\pi}}$$

Phi dependence

Subtracting for undetected one π events in ⁵⁶Fe(e,e') 4 GeV analysis

Negligible phi dependence!

Phi dependence

Use maximum of structure functions from Markov et al. paper for $0.4 \le Q^2 \le 1 \ GeV^2$.

The absolute values are the biggest for $cos\theta_{\pi} = 0.1$, $W = 1232 \text{ GeV}, \ Q^2 = 0.45 \text{ GeV}^2.$ $\sigma_T + \epsilon \sigma_L = 30 \text{ µb}, \sigma_{TT} = -10 \text{ µb} \text{ and } \sigma_{LT} = -2 \text{ µb}.$

$$A = (\sigma_{\rm T} + \epsilon \sigma_{\rm L}) \frac{p_{\pi}^*}{k_{\gamma}^*}$$
$$B = \sigma_{\rm LT} \frac{p_{\pi}^*}{k_{\gamma}^*} \sin \theta_{\pi} \sqrt{2\epsilon(\epsilon + 1)}$$

$$C = \sigma_{\rm TT} \frac{p_{\pi}^*}{k_{\gamma}^*} \sin^2 \theta_{\pi} \epsilon$$

N. Markov et al. arXiv:1907.11974

Acceptance correction factors, acceptance correction factor uncertainties, and) electron radiation correction factors plotted vs E_{cal}

