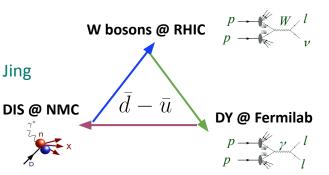
CJ fits: Interplay of HT and offshell corrections and other updates

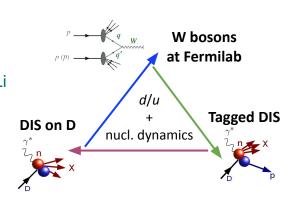
Alberto Accardi

and many thanks to my CTEQ-JLab collaborators: Shujie Li, Ishara Fernando, X. Jing, S. Park, C.E. Keppel, W. Melnitchouk, P. Monaghan, J. Owens

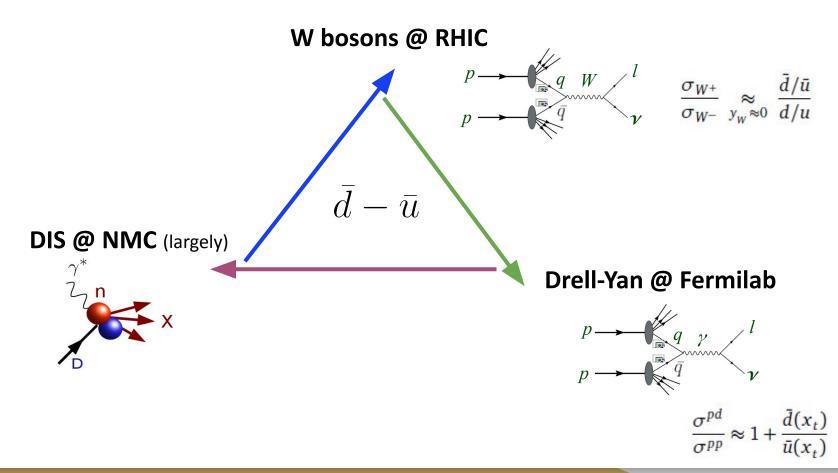
JLUO Meeting

13 June 2022

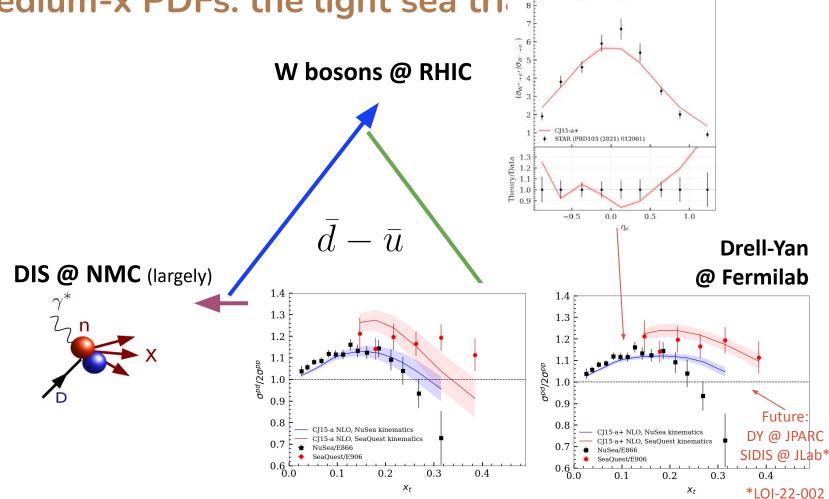



This work is in part supported by the DOE Office of Science

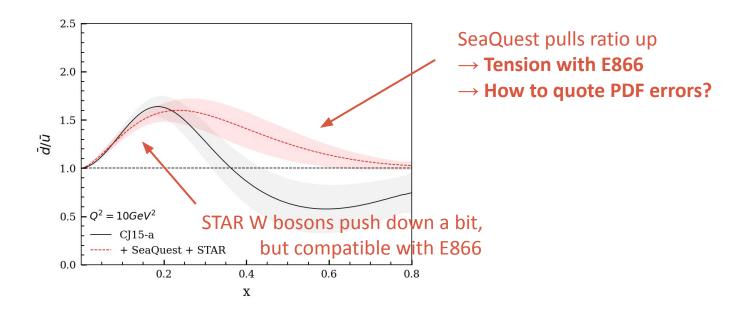
Updates at a glance

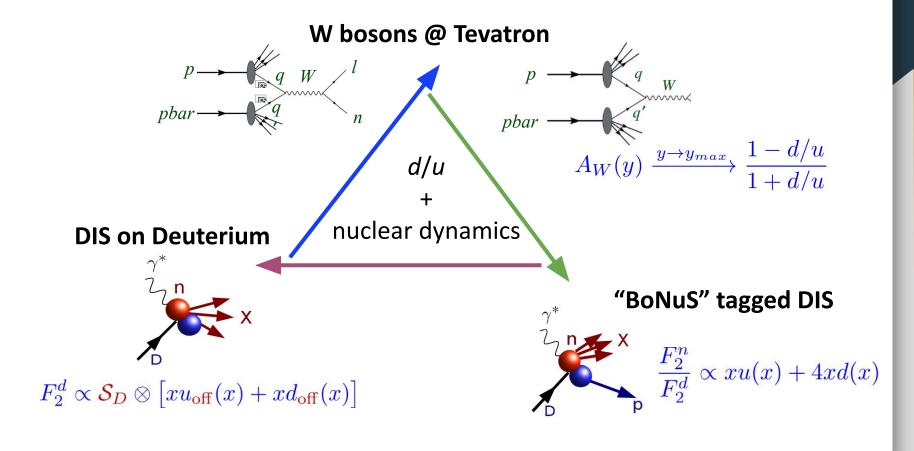

- CJ global QCD analysis
 - Interplay of observables, targets
- SeaQuest DY + RHIC W, Z bosons S. Park, X. Jing
 - Light-sea asymmetry at large x
- Neutron F2 extraction S. Li, I. Fernando
 - Data driven, minimal theory input
 - F2(n) and F2(n/p)
 - Isoscalar moment vs lattice, GSR sum rule revisited
- Interplay of Higher-Twists and Offshell Corrections

 I. Fernando, S. Li
 - CJ vs. AKP fits
 - Hidden large-x theoretical bias on $F_2(n)$ uncovered...
 - ...and removed!
- —> New CJ23 global fit
 - Jlab 12 + LHC W bosons



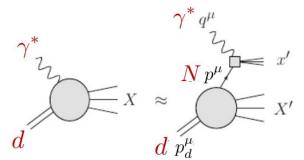
Medium-x PDFs: the light sea triangle


Medium-x PDFs: the light sea tri


 $(W^+ \rightarrow e^+)/(W^- \rightarrow e^-)$

accardi@jlab.org JLUO mtg - 16 June 2022

Medium-x PDFs: the light sea triangle


Large-x PDFs: the valence quark triangle

Deuteron 1: Fermi motion and binding

Weak binding approximation:

- Incoherent scattering from not too fast individual nucleons
- Neglects FSI

$$F_{2d}(x,Q^2) = \int \frac{dz}{z} dp_T^2 \, \mathcal{K}(z,p^2,\gamma) \left| \psi_{N/d}(|\vec{p}\,|) \right|^2 F_{2N}(x/z,Q^2,p^2)$$
 kinematic and

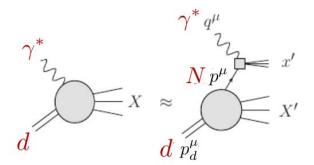
kinematic and "flux" factors

Nucleon wave function

structure function of bound, off-shell nucleon

$$ightharpoonup z = rac{p \cdot q}{p_d \cdot q} \approx 1 + rac{p_0 + \gamma p_z}{M} \left[p_0 = M + \varepsilon, \ \varepsilon = \varepsilon_d - rac{\vec{p}^2}{2M} \right]$$

momentum fraction of d carried by N


$$\longrightarrow$$
 at finite Q^2 , $\gamma = \sqrt{1 + 4x^2p^2/Q^2}$

quantifies how far the nucleon is from the light cone ($\gamma = 1$)

Off-shell corrections in Deuteron

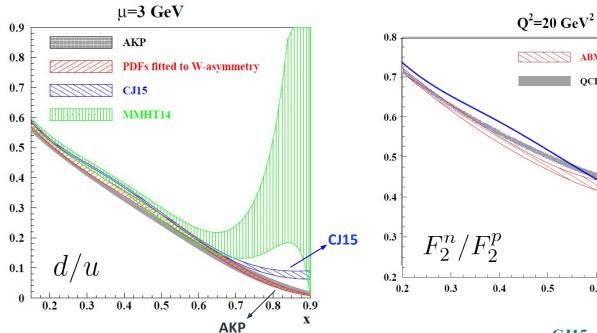
• Nucleons are bound in the deuteron:

- $p^2 < M^2$
- Structure functions are deformed (but not too much if x not too large)

Offshell expansion:

parametrize first order coefficient

$$F_{2N}(x, Q^2, p^2) = F_{2N}^{\text{free}}(x, Q^2) \left[1 + \frac{p^2 - M^2}{M^2} \delta f(x) \right]$$


Free proton, neutron structure function

- Parametrized and fitted (see the earlier triangle)
 - \rightarrow CJ15, AKP

"offshell function"

When fitted, this effectively becomes a phenomenological "catch-all" term (see later)

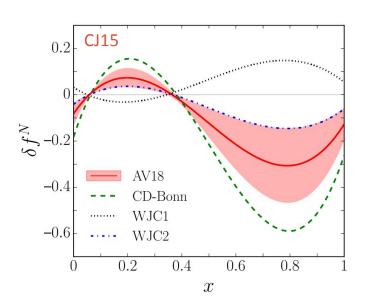
CJ15 and AKP: free nucleons

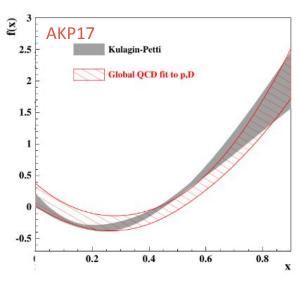
CJ15: PRD 93 (2016) 114017 **AKP**: *PRD 96 (2017) 054005* (see also 2203.07333)

CJ15

0.6

AKP


0.9


ABMP16 (w/o D data)

QCD fit with D data

- AKP has smaller d/u but bigger n/p???
 - Not possible at Leading Twist!
 - \rightarrow Large HT contributions to high-x n/p ratio 0

CJ15 and AKP17: off-shell function

Kulagin, Petti (e+A fits), NPA 765 (2006) 126

Alekhin + KP (e+d global fits) PRD96 (2017) 054005

CJ15: PRD 93 (2016) 114017

- Different shape and size ??
- But many (MANY) differences
 - Extended d-quark (CJ15) vs. conventional (AKP, d/u-->0)
 - Fit real W asymetry vs. only decay lepton W \rightarrow I + (n) asymmetry 0
 - **Off-shell, HT choices**, and their interplay 0

in our opinion!

Ongoing CJ + AKP benchmarking effort

The most important,

0

Interplay of HT and offshell corrections

A tale of th. systematic biases –

HT systematics

CTEO-JLab study, in progress See also Accardi, talk at DNP 2020

HT assumptions

- Additive vs. Multiplicative
 - \rightarrow In both cases, Q^2 -independent
- Isospin symmetric or not

$$F_2(x, Q^2) = F_2^{LT}(x, Q^2) + \frac{H(x)}{Q^2}$$
$$F_2(x, Q^2) = F_2^{LT}(x, Q^2) \left(1 + \frac{C(x)}{Q^2}\right)$$

Isospin and Q^2 assumptions are not independent

e.g., a Q^2 -independent, isospin symmetric multiplicative HT generates an equivalent additive HT that depends on both

$$\widetilde{H}_{p,n}(x,Q^2) = C(x) F_{2p,n}^{LT}(x,Q^2)$$

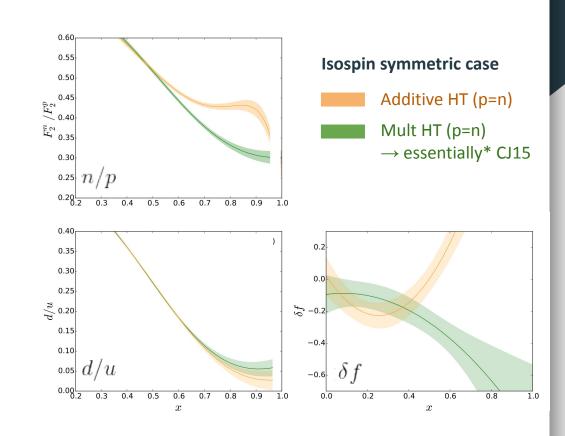
Non-negligible large-x bias

- - Additive (AKP17) overestimates (H > 0)

-negligible large-x bias

if using isospin-independent coefficients

$$\rightarrow$$
 Multiplicative (CJ15) underestimates

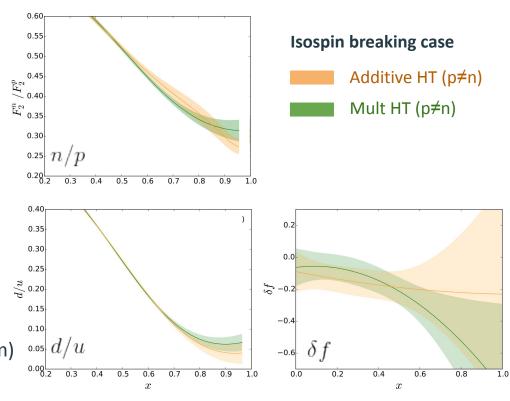

 \rightarrow Additive (AKP17) overestimates ($H > 0$)

$$\frac{n}{p} \xrightarrow[x \to 1]{} \begin{cases}
\frac{1}{4} & \text{mult. } p = n \\
\frac{1}{4} + \frac{H}{u} & p \neq n \\
\frac{1}{4} + 3\frac{H}{u} & \text{add. } p = n
\end{cases}$$

CJ fits - isospin symmetric HT

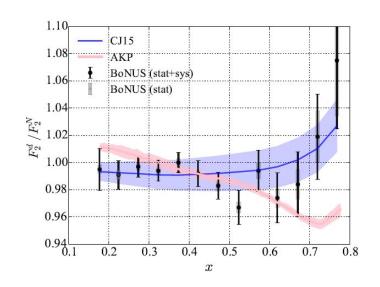
CTEQ-JLab study, in progress See also Accardi, talk at DNP 2020

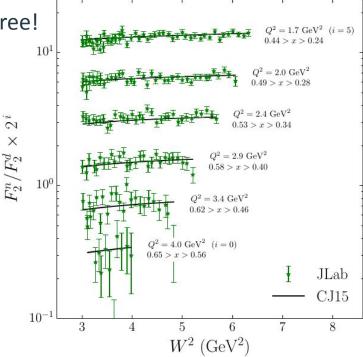
- Additive n/p
 - Larger than Mult n/p
 - \circ Even if d/u is smaller
- Fitted offshell function compensates n/p bias
 - *D/p* well fitted, indeed
- CJ15/AKP17 differences are reproduced!
 - And explained



* uses generic 2^{nd} order polynomial δf

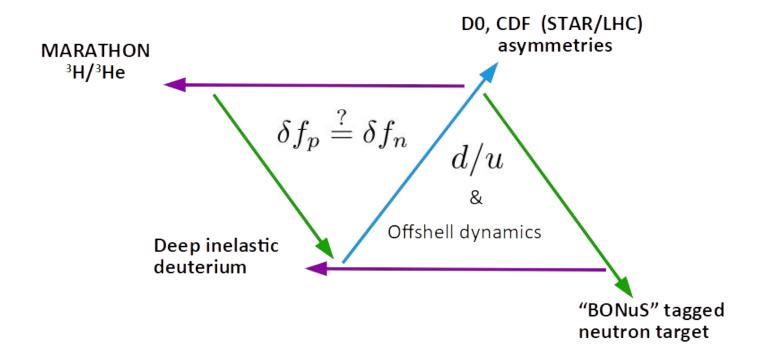
CJ fits - isospin breaking HT


CTEQ-JLab study, in progress See also Accardi, talk at DNP 2020


- Bias removed !!!
 - Small systematics remains
- n/p & d/u
 - Much closer to CJ15
 - Attention when using AKP!
- Small δf offshell correction
 - \circ When averaged over p and n
 - Large cancellation is possible
 (but need A=3 data to confirm)
 (Tropiano et al., PRC 2019)
 (Cocuzza et al., PRD 2021)

Open questions

- Can we confirm the picture just painted? Is δf zero or negative?
 - Need direct experimental sensitivity to δf
 - Tagged DIS experiments
- To start with, BONuS 6 don't seem to disagree!
 - But may not be precise enough at large x


accardi@jlab.org JLUO mtg - 16 June 2022

Summary

- Large- $x F_2(n)$ extraction in global fits:
 - Can have large systematic bias due to HT assumptions
 - → e.g. AKP with additive and isospin independent terms
 - This bias also deforms the extracted offshell function
 - Isospin-asymmetric HT parameterization is needed
- Need good quality tagged DIS data to
 - Measure bound nucleon structure function in nuclei
 - \circ Confirm factorized formula for δf
 - o BONuS 12, TDIS-n, BAND, LAD... at JLab / Electron-Ion Collider
 - \rightarrow And PVDIS on on-shell protons for precise d/u
- Global QCD fits can exploit both tagged and inclusive data, and
 - Combine the statistical power of proposed and future measurements
 - o Identify pulls against, or confirm compatibility with, other DIS, DY, jet data
 - \circ Measure δf , indeed, with highest precision and accuracy
 - \rightarrow And provide robust free $F_2(n)$ extraction at large x

The QCD parallelogram

- Can extend the CJ15 triangle to a parallelogram
 - → and verify if off-shell protons ~ off-shell neutrons !!

Main References

Large-x fits with nuclear corrections - CJ vs. AKP

- CJ15: Accardi et al., PRD 93 (2016) 114017
- AKP: Alekhin, Kulagin, Petti, PRD 96 (2017) 054005 & arXiv:2203.07333
- Accardi, DNP 2020 / Fernando, GHP 2021 / Accardi, APS 2022
- See also:
 - Cocuzza et al. (JAM), <u>PRL 127 (2021) 24</u>

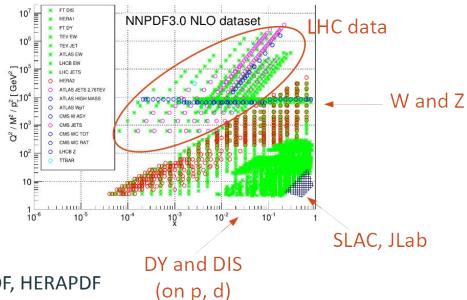
Light quark asymmetry, QCD analysis

- Park, Accardi, Jing, and Owens, <u>arXiv:2108.05786</u>
- See also:
 - Guzzi et al. (CT), <u>arXiv:2108.06596</u>
 - Cocuzza et al. (JAM), <u>PRD 104 (2021) 074031</u>

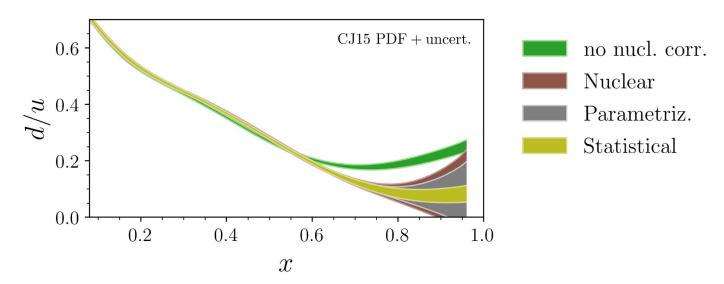
General References

QCD global analysis from protons to nuclei:

- Accardi, <u>PoS DIS2015 (2015) 001</u>
- Jimenez-Delgado, Melnitchouk, Owens, <u>J.Phys.G40 (2013) 093102</u>
- Ethier, Nocera, *Ann.Rev.Nucl.Part.Sci.* (2020) 70, 1-34


QCD global analysis and statistical methods:

Kovarik, Nadolsky, Soper, <u>Rev.Mod.Phys. 92 (2020) 4, 045003</u>


Thank you!

Global QCD fits

- $d\sigma_{ ext{hadron}} = \sum_{f_1, f_2, i, j} \phi_{f_1} \otimes \hat{\sigma}_{ ext{parton}}^{f_1 f_2 o ij} \otimes \phi_{f_2}$ PDFs (from DIS fits)
- pQCD factorization & universality:can fit PDFs to a variety of hard scattering data
 - Hadron-hadron collisions
 - \rightarrow Jets
 - → Electro-weak boson production
 - Electron-proton DIS
 - Electron-Deuteron DIS
- >1000 data points
- 40+ years of experience,
 - "High-energy" fitters:
 - → CTEQ-TEA, MMHT, NNPDF, HERAPDF
 - Lower-energy / nuclear focus:
 - → CTEQ-JLab, AKP, ABMP, JAM

The CJ15 d/u ratio

- Theoretical uncertainties: difficult to quantify, e.g.:
 - Nuclear: wave function choice
 - Off-shell uncertainties are parametrized → partly included in <u>Statistical</u> band
 - Parametrization: *d*-quark flexibility in extrapolation region
- Theoretical biases: even less obvious!
 - We shall discuss those from HT and offshell implementation choices

What can we learn from TRITIUM

C. Cocuzza et. al., arXiv:2104.06946

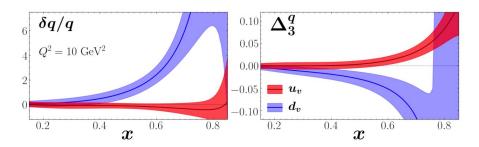


FIG. 3. Ratio of off-shell to on-shell PDFs $\delta q/q$ (left) and the difference between proton valence quarks in ³He and ³H normalized to the sum, Δ_3^q (right), for valence u (red bands) and d (blue bands) quarks, at $Q^2 = 10 \text{ GeV}^2$.

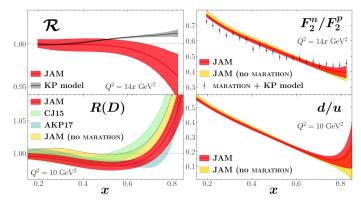


FIG. 2. Results from the present JAM analysis including MARATHON data (red bands) for the super-ratio \mathcal{R} (top left), F_2^n/F_2^p ratio (top right), deuteron EMC ratio R(D) (bottom left), and the d/u ratio (bottom right), compared with those without the MARATHON data (yellow bands). The super-ratio \mathcal{R} is compared with the KP model input (gray band) used to extract the F_2^n/F_2^p ratio in [12]. The deuteron EMC ratio R(D) is also compared with that from CJ15 [5] (green band) and AKP17 [6] (light blue band).

Backup for kinematics

$$x^* = \frac{Q^2}{2p_N^{\mu}q^{\mu}} \approx \frac{Q^2}{2M\nu(2-\alpha_s)} = \frac{x}{2-\alpha_s}$$

$$y^* = \frac{p_N^{\mu}q_{\mu}}{p_N^{\mu}k_{\mu}} \approx y,$$

$$M^{*2} = (M_d - E_s)^2 - \vec{p}_s^2.$$

$$M^{*2} = (M_d - E_s)^2 - \vec{p}_s^2.$$

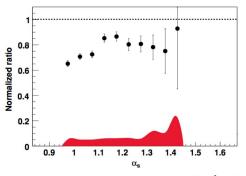


Figure 11: Ratio of the extracted off-shell structure function F_{2n} at x' = 0.55, $Q^2 = 2.8 \,\text{GeV}^2$ to that at x' = 0.25, $Q^2 = 1.8 \,\text{GeV}^2$, divided by the ratio of free structure functions at those kinematic points. The error bars show the statistical uncertainty; the shaded band indicates the systematic uncertainty. [31]

The ratio between the $d(e_ren_s)$ cross section at two different x' values, keeping the recoil nucleon kinematics the same, is:

$$\frac{d^4\sigma}{dx_1dQ_1^2d\bar{p}_s} / \frac{d^4\sigma}{dx_2dQ_2^2d\bar{p}_s} = (K_1/K_2)[F_2^*(x_1',\alpha_s,p_T,Q_1^2)/F_2^*(x_2',\alpha_s,p_T,Q_2^2)]$$

Using $x_1' \approx 0.5 - 0.6$ and $x_2' \approx 0.3$ we will measure the ratio of effective structure functions:

$$[F_{2}^{*}(x_{1}^{\prime},\alpha_{s},p_{T},Q_{1}^{2})/F_{2}^{*}(x_{2}^{\prime},\alpha_{s},p_{T},Q_{2}^{2})] = \left(\frac{d^{3}\sigma}{dx_{1}dQ_{1}^{2}d\bar{p}_{s}}/K_{1}\right) \left/\left(\frac{d^{4}\sigma}{dx_{2}dQ_{2}^{2}d\bar{p}_{s}}/K_{2}\right)\right.$$

Integrating over the recoil scattering angle in the range where the FSI is expected to be small, we will compare the measured ratio as a function of α , to the measured free proton structure function.

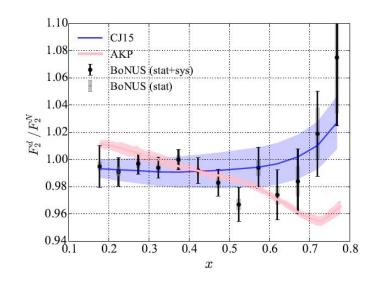
Are we done with (nuclear) corrections?

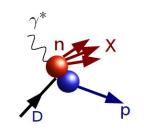
Theoretical choices —

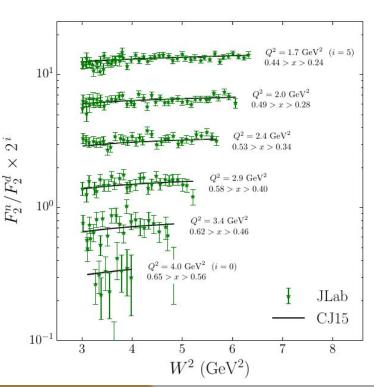
	KP	AKP	CJ15	AKP-like
shadowing	yes	yes (which one?)	MST x<0.1	(same)
smearing	Paris	AV18	AV18 x>0.1	(same)
pi-cloud	yes	yes		
TMC	GP O(Q4)?	GP O(Q4)??	GP approx.	(same)
НТ	H (p=n ??)	H (p=n)	C (p=n)	H & C, p=n p!=n
HT(x)	??	5 pt. spline	parametrized	parametrize
off-shell	O(p2-M2)	O(p2-M2)	O(p2-M2)	(same)
df(x)	factorized	polyn. 2nd/3rd	factorized + sum rule	polyn. 2nd/3
pi thresh.	yes	yes		

accardi@jlab.org JLUO mtg - 16 June 2022

Are we done with (nuclear) corrections?

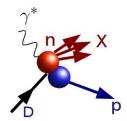

Theoretical choices Corrections (increasing-x) CJ15 AKP-like KP AKP MST x<0.1 shadowing (same) smearing nyclear correction model: pi-cloud TMC (same) One needs to know and pay attention to the detail HT HT(x) 5 pt. spline parametrized parametrized O(p2-(lyes: that means reading off-shell (same) the theory papers without rush....) df(x)pi thresh. yes

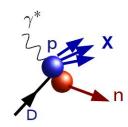

accardi@jlab.org JLUO mtg - 16 June 2022


Tagged DIS to the rescue

Open questions

- Can we confirm the picture just painted? Is δf negative?
 - Need direct experimental sensitivity to δf
 - Tagged DIS experiments
- BONuS 6 data don't seem to disagree!
 - But may not be precise enough at large x


Open questions

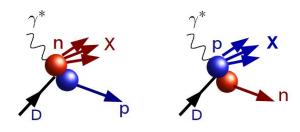

- Is the simple proposed factorization correct?
 - Or at least phenomenologically acceptable ?

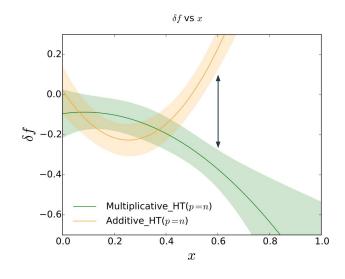
$$F_{2N}(x, Q^2, p^2) = F_{2N}^{free}(x, Q^2) [1 + v \,\delta f(x)]$$

$$v = \frac{p^2 - M^2}{M^2}$$

Inclusive DIS only probes small off-shellness

More data, please!

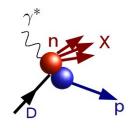

• One can extract δf

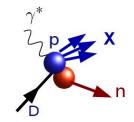

$$\frac{F_{2N}}{F_{2N}^{free}} = 1 + v \,\delta f(x)$$

- Experiment by experiment
- or in a global QCD fit

Need more tagged DIS data with

- \circ FSI under control (small ν , backward φ)
- Large lever arm, good resolution on v (or p_s)
- x>0.6 would clearly distinguish the two cases

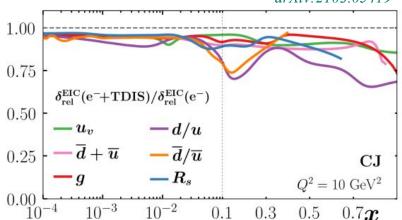




More data, please!

At JLab:

- BONuS 12, TDIS-n, BAND, LAD...
- Proton and <u>neutron</u> tagging



At the EIC

- Simulated Data (C.Weiss et al. JLab LDRD 2014)
 - → Proton tagging + on-shell extrapolation method

• Fits by *X.Jing and S.Li*

EIC yellow report, arXiv:2103.05419

