

Updates on global JAM Fits

www.jlab.org/theory/jam

Chris Cocuzza (Temple U.) June 13, 2022

Introduction

JAM Collaboration

Extract 3-dimensional structure of hadrons

	Abbreviation	Dimensions
Parton Distribution Functions	PDF	1
Fragmentation Functions	FF	1
Transverse momentum dependent distributions	TMD	3
Generalized parton distributions	GPD	3

Collinear factorization in perturbative QCD

Simultaneous determinations of PDFs, FFs, etc.

Monte Carlo methods for Bayesian inference

Introduction

Current State of JAM Global Analyses

A Global Analysis

Simultaneous extractions of spin-averaged PDFs, helicity PDFs, and FFs

Introduction

 z_h

0.8

Database

 10^{-}

 10^{-2}

0.1

0.7 2

0.3

0.5

0.2

0.4

0.6

0.7 \boldsymbol{x}

 10^{-2}

0.5

Spin-Averaged Sea Asymmetry (2021) Bayesian Monte Carlo extraction of sea asymmetry with SeaQuest and STAR data 1.5 Christopher Cocuzza, Wally Melnitchouk, Andreas Metz, Nobuo Sato https://arxiv.org/abs/2109.00677 1.0C. Cocuzza *et al.*, Phys. Rev. D. **104**, no. 7, 074031 (2021). baseline 0.5 +STAR $d/ar{u}$ $\frac{\sigma_{pD}}{2\sigma_{pp}}\Big|_{x_1 \gg x_2} \approx \frac{1}{2} \Big[1 + \frac{d(x_2)}{\bar{u}(x_2)} \Big]$ Well-known tension -SeaQuest between NuSea and $x(\bar{d}-\bar{u})$ 0.04 SeaQuest SeaQuest = JAM (SeaQuest) In NuSea JAM (NuSea) 1.4 0.021.2JAM 0.04 $Q^2 = 10 \text{ GeV}^2$ ABMP16 0.00

1.0 0.5 $\delta/\delta_{
m baseline}$ 0.2 0.3 0.4 \boldsymbol{x}

Large reduction in uncertainties and increase in central value

PHENIX 2005

 $|\eta| \in [0.0, 0.35]$

0.05 STAR 2009

 $|\eta| \in [0.5, 1.0]$

STAR 2015 $|\eta| \in [0.0, 0.5]$

20

 $p_T (GeV)$

 $\Delta q > 0$

 $\Delta q < 0$

30

10

0.00

10

60

0.00

-0.02

-0.04

STAR 2005

20

30

0.2 $\eta \in [0.2, 0.8]$

0.06 STAR 2009

 $0.04 \quad |\eta| \in [0.0, 0.5]$

STAR 2013

 $0.04 \mid \eta \mid \in [0.0, 0.9]$

0.1 STAR 2015

— gg -- qg

 $|\eta| \in [0.5, 1.0]$

 $p_T \stackrel{20}{(GeV)}$

0.02

14

30

Small x Global Analysis (2021)

Transversity PDFs (2022)

Updated QCD global analysis of single transverse-spin asymmetries I: Extracting \tilde{H} , and the role of the Soffer bound and lattice QCD

Transversity PDF

Leonard Gamberg, Michel Malda, Joshua A. Miller, Daniel Pitonyak, Alexei Prokudin, Nobuo Sato

Outlook

Outlook

Jefferson Lab 12 GeV will provide new information on helicity PDFs and nuclear effects at high *x*

EIC will provide new information on helicity PDFs at low x

Collaboration

Collaboration

Andreas Metz

Wally Melnitchouk

Nobuo Sato

Thank you to Jacob Ethier, Yiyu Zhou, and Patrick Barry for helpful discussions

www.jlab.org/theory/jam

Backup

Part 1: Introduction

Parameters to Observables

Parameterize PDFs at input scale $Q_0^2 = m_c^2$

$$f_i(x) = N x^{\alpha} (1-x)^{\beta} (1+\gamma \sqrt{x}+\eta x)$$

$$\frac{\mathrm{d}}{\mathrm{d}\,\ln(\mu^2)}f_i(x,\mu) = \sum_j \int_x^1 \frac{\mathrm{d}z}{z} P_{ij}(z,\mu)f_j(\frac{x}{z},\mu)$$

Calculate Observables

$$d\sigma_{\rm DY} = \sum_{i,j} H_{ij}^{\rm DY} \otimes f_i \otimes f_j$$

Part 1: Introduction

The χ^2 function

Now that the observables have been calculated...

Part 1: Introduction

Bayes' Theorem

Now that we have calculated $\chi^2(a, data)...$

Likelihood Function

$$\mathcal{L}(\boldsymbol{a}, \text{data}) = \exp\left(-\frac{1}{2}\chi^{2}(\boldsymbol{a}, \text{data})\right)$$

$$\begin{array}{c} \text{Posterior Beliefs} \\ \mathcal{P}(\boldsymbol{a}|\text{data}) \\ \mathcal{P}(\boldsymbol{a}|\text{data}) \\ \sim \mathcal{L}(\boldsymbol{a}, \text{data}) \\ \pi(\boldsymbol{a}) \\ \text{Prior Beliefs} \end{array}$$

$$\begin{array}{c} \text{Posterior Beliefs} \\ \mathcal{P}(\boldsymbol{a}|\text{data}) \\ \mathcal{L}(\boldsymbol{a}, \text{data}) \\ \text{Evidence} \end{array}$$

Data Resampling

Error Quantification

For a quantity O(a): (for example, a PDF at a given value of (x, Q^2))

$$E[O] = \int d^{n}a \ \rho(a \mid data) \ O(a)$$

$$V[O] = \int d^{n}a \ \rho(a \mid data) \ [O(a) - E[O]]^{2}$$

Build an MC ensemble

$$E[O] \approx \frac{1}{N} \sum_{k}^{k} O(a_{k})$$

$$V[O] \approx \frac{1}{N} \sum_{k}^{k} [O(a_{k}) - E[O]]^{2}$$

Average over k sets of the parameters (replicas)

0.4 JAM15 (\mathbf{a}) 0.30.20.10.0 -0.1 $- x\Delta u^+$ (**b**) 0.4 $x \Delta d^+$ 0.3 $x\Delta s^+$ 0.2 $- x \Delta g$ 0.10.0 -0.1 10^{-3} 10^{-2} 0.1 0.3 0.5 0.7

Part 1: JAM Methodology

Multi-Step Strategy

Part 1: JAM Methodology

Putting it all together...

Part 2: Data and Fitting

Deep Inelastic Scattering

 $\frac{\text{Virtuality:}}{Q^2 = -q^2}$

Invariant mass of outgoing particles:

 $W^2 = (p+q)^2$

Part 3: Spin-Averaged PDFs

STAR Quality of Fit

Introduction to Sea Asymmetry

Kinematic Coverage (Spin-Averaged)

25

SeaQuest and NuSea Quality of Fit

process	$N_{\rm dat}$	$\chi^2/N_{\rm dat}$
Drell-Yan		
NuSea pp	184	1.21
${ m NuSea} pD/2pp$	15	1.30
SeaQuest $pD/2pp$	6	0.82

 $\left. \frac{\sigma_{pD}}{2\sigma_{pp}} \right|_{x_1 \gg x_2} \approx \frac{1}{2} \left[1 + \frac{\bar{d}(x_2)}{\bar{u}(x_2)} \right]$

Well-known tension between NuSea and SeaQuest

Impact from STAR and SeaQuest

STAR: Moderate reduction of uncertainties

SeaQuest: Large reduction of uncertainties, especially at x > 0.2. $\overline{d}/\overline{u} > 1$ up to $x \approx 0.4$, in agreement with models

Sources of Asymmetry

Comparison to other fits and pion cloud model

28

Good agreement with pion cloud model

Quark and Antiquark Polarizations

Part 3: Helicity PDFs

Spin Up/Down PDFs

Kinematic Coverage

Deep Inelastic Scattering	BCDMS, NMC, SLAC, HERA, Jefferson Lab	3863	points
Drell-Yan	Fermilab E866	250	points
W/Z Boson Production	Tevatron CDF/D0, LHC ATLAS/CMS	239	points
Jets	Tevatron CDF/D0, RHIC STAR	196	points

Isospin Symmetry

How to relate quarks between protons and neutrons?

It is usually approximated that:

 $u_{p/A} \approx d_{n/A}$

 $d_{p/A} \approx u_{n/A}$

"Free" nucleon

(Approx.) Symmetric Nuclei $(D, {}^{56}Fe)$

Asymmetric Nuclei (³He,³ H,¹⁹⁷ Au)

Isovector Effect

Mean Field Approximation in the valence region:

Isovector Effect

I. C. Cloet, W. Bentz and A. W. Thomas, Phys. Rev. Lett. 102, 252301 (2009).

Mediated by $I_3 = \pm 1$ mesons, dependent on third component of isospin

Symmetries

$$\delta u_{p/D} \equiv \delta d_{n/D}$$

$$\delta d_{p/D} \equiv \delta u_{n/D}$$

$$\delta u_{p/3He} \equiv \delta d_{n/3H}$$

$$\delta d_{p/3He} \equiv \delta u_{n/3He}$$

Part 4: Isovector Nuclear Effects

Nuclear PDFs

$$q_{N/A}^{(\text{on})}(x,Q^2) = [f^{N/A} \otimes q_N]$$

$$q_{N/A}^{(\text{off})}(x,Q^2) = [\tilde{f}^{N/A} \otimes \delta q_{N/A}]$$

$$\Delta_3^u \equiv \frac{u_{p/3\text{H}} - d_{n/3\text{H}}}{u_{p/3\text{H}} + d_{n/3\text{H}}}$$

$$\Delta_3^d \equiv \frac{d_{p/3\text{H}} - u_{n/3\text{H}}}{d_{p/3\text{H}} + u_{n/3\text{H}}}$$

$$\Delta_3^d \equiv \frac{d_{p/3\text{H}} - u_{n/3\text{H}}}{d_{p/3\text{H}} + u_{n/3\text{H}}}$$
Measures strength of isovector effect

Impact from MARATHON

MeAsurement of the F_2^n/F_2^p , d/u RAtios and A = 3 EMC Effect in Deep Inelastic Electron Scattering Off the Tritium and Helium MirrOr Nuclei

d/u Ratio

 F_2^n/F_2^p Ratio

A = 3 EMC Effects

Impact on *d/u*

Part 4: Isovector Nuclear Effects

39

Impact on F_2^n/F_2^p

Slight shift towards MARATHON + KP model result

Impact from MARATHON

MeAsurement of the F_2^n/F_2^p , d/u RAtios and A = 3 EMC Effect in Deep Inelastic Electron Scattering Off the Tritium and Helium MirrOr Nuclei

d/*u* Ratio

 F_2^n/F_2^p Ratio

A = 3 EMC Effects

First global QCD analysis of JLab ³He/D and MARATHON data

Isovector Extraction

$$\Delta_3^u \equiv \frac{u_{p/^3H} - d_{n/^3H}}{u_{p/^3H} + d_{n/^3H}}$$
$$\Delta_3^d \equiv \frac{d_{p/^3H} - u_{n/^3H}}{d_{p/^3H} + u_{n/^3H}}$$
Signal for
non-zero effect above
 $x \gtrsim 0.4!$

Impact from MARATHON

MeAsurement of the F_2^n/F_2^p , d/u RAtios and A = 3 EMC Effect in Deep Inelastic Electron Scattering Off the Tritium and Helium MirrOr Nuclei

d/*u* Ratio

 F_2^n/F_2^p Ratio

A = 3 EMC Effects

Isospin Symmetry

How to relate quarks between protons and neutrons?

It is usually approximated that:

 $u_{p/A} \approx d_{n/A}$

 $d_{p/A} \approx u_{n/A}$

But the correct equations are:

$$u_{p/A} = d_{n/A^*}$$

$$d_{p/A} = u_{n/A^*}$$

where A* is the mirror nuclei of A

Part 4: Isovector Nuclear Effects

EMC Ratios

 $R(D) = F_2^D / \left(F_2^p + F_2^n\right)$ $R(^{3}\text{He}) = F_{2}^{^{3}\text{He}} / (2F_{2}^{p} + F_{2}^{n})$ $R(^{3}\mathrm{H}) = F_{2}^{^{3}\mathrm{H}} / (F_{2}^{p} + 2F_{2}^{n})$ $\mathscr{R} = R(^{3}\text{He})/R(^{3}\text{H})$

Significant differences between JAM result and KP model result

Introduction

Current State of Helicity PDFs

 $dx \sum \Delta q^+$

 $dx\Delta g$

Still a lot to learn about helicity PDFs at low x and the helicity sea quark PDFs!

46

Kinematic Coverage (Helicity)

Deep Inelastic Scattering	COMPASS, EMC, HERMES, SLAC, SMC	365	points
W/Z Boson Production	STAR, PHENIX	18	points
Jets	STAR, PHENIX	61	points

STAR Quality of Fit

process	$N_{ m dat}$	$\chi^2/N_{ m dat}$
polarized		
inclusive DIS	365	0.93
inclusive jets	83	0.81
SIDIS (π^+,π^-)	64	0.93
SIDIS (K^+, K^-)	57	0.36
STAR W^{\pm}	12	0.53
PHENIX W^{\pm}/Z	6	0.63
total	587	0.85
unpolarized		
inclusive DIS	3908	1.11
inclusive jets	198	1.11
Drell-Yan	205	1.19
W/Z production	153	0.99
total	$\boldsymbol{4464}$	1.11
SIA (π^{\pm})	231	0.85
SIA (K^{\pm})	213	0.49
total	5495	1.05
$A_L^{W^+}(y_W) \propto \frac{\Delta}{2}$	$\bar{d}(x_1)u(x_2)$	$(x) - \Delta u(x)$
$L (9W) \propto$	$\overline{d}(x_1)u(x_2)$	$(u) + u(x_1)u$

 $A_L^{W^-}(y_W) \propto \frac{\Delta \bar{u}(x_1)d(x_2) - \Delta d(x_1)\bar{u}(x_2)}{\bar{u}(x_1)d(x_2) + d(x_1)\bar{u}(x_2)}$

 $)\overline{d}(x_2)$

Resulting Asymmetry

NNPDF shows hint of positive asymmetry at intermediate x

Our result is strongly positive in both regions of x

Proton Spin Contributions

Flavor	JAM moment (truncated)	Lattice Moment (full)	Difference
Δu^+	0.779(34)	0.864(16)	0.085
Δd^+	-0.370(40)	-0.426(16)	0.056

C. Alexandrou *et al.*, Phys. Rev. D **101**, 094513 (2020).

Global Analyses Highlights

Exploratory Analysis of Experiment with Lattice (2020)

Confronting lattice parton distributions with global QCD analysis

J. Bringewatt

Department of Physics, University of Maryland, College Park, Maryland 20742, USA

N. Sato, W. Melnitchouk, and Jian-Wei Qiu Jefferson Lab, Newport News, Virginia 23606, USA

F. Steffens

Institüt für Strahlen- und Kernphysik, Universität Bonn, 53115 Bonn, Germany

M. Constantinou

Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA

https://arxiv.org/abs/2010.00548

51

Combining experiment and lattice in a global QCD analysis is feasible!

Opportunities at the EIC

EIC Impact on Helicity PDFs (2021)

52

Opportunities at the EIC

Impact of Parity Violating DIS (2021)

53

Opportunities at the EIC

54

 10^{-1}

Latest Fragmentation Functions (2021)

Simultaneous Monte Carlo analysis of parton densities and fragmentation functions

E. Moffat, W. Melnitchouk, T. C. Rogers, N. Sato

Summary and Outlook

Isovector EMC Effect

Isovector EMC effect from global QCD analysis with MARATHON data

