

Experimental study of polarization observables in π^0 and η photoproduction off quasifree nucleons

2022 Frontiers and Careers in Nuclear and Hadronic Physics

Nicolas Jermann - CBELSA/TAPS-Collaboration | 06 August 2022

In loving memory of **Prof. Dr. Bernd Krusche** († June 1, 2022)

https://physik.unibas.ch/en/news/details/prof-dr-bernd-krusche-passed-away/

Motivation Missing resonance problem

Quark model

Narrow structure in ηn

aegle et a

W[GeV]

1.8

1.8

More details with polarisation

https://commons.wikimedia.org/wiki/File:Reflection_Polarizer2.jpg

 \Rightarrow polarisation observables give access to interference terms, i.e. $\sigma_{unpol} \propto |\mathcal{A}_i|^2 \text{ vs } \sigma_{pol} \propto \mathcal{A}_i \mathcal{A}_i^*$

Baseline & goal

- Crystal Barrel/TAPS at ELSA
- $-E_{\gamma} = 500 3150 \text{ MeV}$
- Linearly polarized beam with coherent edge at 1200 MeV
- Transversely polarized deuterated butanol target

Measurement goal

- Beam asymmetry Σ
- Target asymmetry *T*
- Recoil asymmetry P
- $-\mathcal{BT}$ -double-pol. observable H

Reactions $-\gamma N \rightarrow \pi^0 N \& \gamma N \rightarrow \eta N$ $-\pi^0/\eta \rightarrow 2\gamma \& \eta \rightarrow 3\pi^0 \rightarrow 6\gamma$

Beam pol.		Target pol.		
		x	у	Z
_	σ_0	_	Т	_
linear	$-\Sigma$	Н	-P	G
cicular	_	F	_	-E

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_0 \left\{1 - \delta\Sigma \cos\left(2(\alpha - \phi)\right) + \Lambda T \sin(\beta - \phi) - \delta\Lambda P \cos\left(2(\alpha - \phi)\right) \sin(\beta - \phi) - \delta\Lambda H \sin\left(2(\alpha - \phi)\right) \cos(\beta - \phi)\right\}$$

Experimental setup Crystal Barrel/TAPS setup

Data analysis Particle identification

Data analysis

Polarisation degrees

- Beam photon polarisation $\delta \stackrel{!}{>} 0.1 \Rightarrow E_{\gamma} = 650 - 1750 \text{ MeV}$
- Target nucleon polarisation $\overline{\Lambda}_{NMR} \approx 69.9\%$
 - $-\Lambda_D \rightarrow \Lambda_N$ correction
 - $-\Lambda_N \rightarrow \Lambda_N \cdot d$ correction with dilution factor

$$d = \frac{\widehat{N}_D}{\widehat{N}_{dB}} = \frac{\widehat{N}_{dB} - c_t \cdot \widehat{N}_C}{\widehat{N}_{dB}}$$

W reconstruction from final state

$$-\gamma + D \rightarrow m + N_P + N_S$$

$$-$$
 Use $W = \sqrt{s} = m(mN_P)$

Data analysis Extraction methods

Two methods are used for extraction of polarisation observables:

1. Asymmetry method (Asym): Calculate asymmetry from event yields and fit the spectra, e.g.

2. Maximum likelihood estimation method (MLE): Event based minimisation of $(-\ln \mathcal{L})$

Results (preliminary) $\pi^0 p$

Results (preliminary) $\pi^0 p$

Results (preliminary) $\pi^0 n$

Results (preliminary) $\pi^0 n$

Results (preliminary) ηp

Results (preliminary) ηn

Results (preliminary) ηp and ηn

Summary & outlook

Summary

- Clean event selection for all reactions
- Preliminary results for observables Σ , *T*, *P* and *H* are presented for $\pi^0 N$ and ηN final states
- Results in good agreement with existing data

Outlook

- Improvement of statistics with second beam time, especially for *P* and *H* in ηN
- Including data in PWA models, e.g. MAID 2021

Sources

Reference data

- GRAAL (Bartalini, 2005): EPJA 26, 399 (2005) - Σ in $\pi^0 p$
- CBELSA/TAPS (Stausberg, 2019): Master's thesis,
 "Time calibration [...]", R. F.-W.-Universität Bonn (2019)

 $-\Sigma, T, P, H \text{ in } \pi^0 p$

- CBELSA/TAPS (Hartmann, 2015): PLB 748, 399 (2015)
 - $-T, P, H \text{ in } \pi^0 p$
- GRAAL (Di Salvo, 2009): EPJA 42, 151 (2009)
 Σ in π⁰n
- CBELSA/TAPS (Ajaka, 1998): PRL 81, 9 (1998)
 Σ in ηp

- CBELSA/TAPS (Elsner, 2007): EPJA 33, 147 (2007)
 Σ in ηp
- GRAAL (Bartalini, 2007): EPJA 33, 169 (2007)
 Σ in ηp
- CLAS (Collins, 2017): PLB 771, 213 (2017)
 Σ in ηp
- CBELSA/TAPS (Afzal, 2020): PRL 125, 152002 (2020)
 - $-\Sigma$ in ηp
- CBELSA/TAPS (Müller, 2020): PLB 803, 135323
 (2020)
 T, *P*, *H* in *np*
- A2 (Akondi, 2014): PRL 113, 102001 (2014)
 T in ηp
- GRAAL (Fantini, 2008): PRC 78, 015203 (2008)
 - $-\Sigma$ in ηn

PWA models

- BnGa 2019: PLB 803, 135323 (2020)
 Σ, T, P, H in π⁰N and ηN
- SAID MA19: PRC 100, 065205 (2019)
 Σ, T, P, H in π⁰N
- MAID 2021: V. Kashevarov, private communication (2022)
 - $-\Sigma, T, P, H \text{ in } \pi^0 N$
- EtaMAID 2018: EPJA 54, 210 (2018)
 Σ, T, P, H in ηN

Ê.

1

Thank you for your attention.

百百百

222

首百

百姓

10 10 10

245 57

Basel-Old University (Image: Mark Niedermann, @ University of Basel