Determination of the polarization observables ${\cal T}, \, P$ and H in the reaction $\gamma p o p \pi^0$

Sebastian Ciupka

University of Bonn

6. August 2022

Introduction

Baryon Spectroscopy

• Study the constituents of the nucleus

Baryon Spectroscopy

- Study the constituents of the nucleus
- Wide resonances with strong overlap

Baryon Spectroscopy

- Study the constituents of the nucleus
- Wide resonances with strong overlap

U. Loering, B.C. Metsch, H.R. Petry, EPJA 10 (2001) 395-446

Photon polarization		Target polarization		Recoil nucleon polarization			Target and recoil polarizations					
		X	Y	Z(beam)	X'	Y'	Z'	X' X	X' Z	Z' X	Z' Z	
unpolarized linear circular	σ -Σ -	- H F	T (-F -	- - G - E	- O _{x'} C _{x'}	P (-T) -	O _{z'} C _{z'}	T _{x'} (-L _z) -	L _{x'} (T _z) -	T _{z'} (L _x) -	L _z . (-T _x) -	

The Crystal-Barrel Experiment

- Main calorimeter not in first level trigger
- Inner Detector is not sensitive to neutral Particles

Detector angular coverage

Inner Detector	$23.1^\circ < heta < 166^\circ$
Forward Plug	$11.2^\circ < heta < 27.5^\circ$
MiniTAPS	$1^\circ < heta < 12^\circ$

 Inner Detector is not sensitive to neutral Particles

Detector angular coverage

Inner Detector	$23.1^\circ < heta < 166^\circ$
Forward Plug	$11.2^\circ < heta < 27.5^\circ$
MiniTAPS	$1^\circ < heta < 12^\circ$

• CB calorimeter needs to be included in the first level trigger

 Inner Detector is not sensitive to neutral Particles

Inner Detector	$23.1^\circ < heta < 166^\circ$
Forward Plug	$11.2^\circ < heta < 27.5^\circ$
MiniTAPS	$1^\circ < heta < 12^\circ$

- CB calorimeter needs to be included in the first level trigger
- Information on number of clusters has to be available within < 700ns

Improving Signal to Noise

- Pin diodes are replaced by Avalanche Photo Diodes (APDs).
- Reverse bias voltage, high doping creates strong electric field
 - \Rightarrow Drifting electrons create an avalanche
 - $\Rightarrow \mathsf{High} \text{ internal gain}$

Splitting the Signal

 Signal from the preamplifier is shaped and split up: Timing branch: Very fast rise and decay time, used for the trigger decision. Energy branch: Slower signal allows for better signal-to-noise ratio when measuring the integral, which is proportional to the deposited energy

- Timing branch signal is used to detect clusters with an FPGA and a defined pattern
- Old charge integrating circuit is replaced with sampling ADCs for the energy readout

Analysis

To remove background events some cuts are applied:

- Timecut: The event should coincide with an tagged photon
- Kinematic restraints require the incident photon, the proton and meson to be coplanar
- Predicted and measured angle of the Proton must be equal
- Invariant mass of the two photons equal to one pion
- Mass of the proton from known initial state

Event Selection

3PED Missing Mass

3PED Meson Mass

University of Bonn

Sebastian Ciupka

1200

Background Subtraction

- Background is determined with a carbon target.
- The same event selection is applied
- More time with the butanol target \Rightarrow Background has to be scaled!

Scaling factor :2.458913

Dilution

Dilution

University of Bonn

Sebastian Ciupka

Getting Results

3 PED ~ \bullet measured all final states: 2 γ and proton

• in forward directions proton might get lost

3 PED $\,$ • measured all final states: 2 γ and proton

• in forward directions proton might get lost

To get the forward direction, we need to look at 2.5 PED and 2 PED events.

- 3 PED $\,$ measured all final states: 2 γ and proton
 - in forward directions proton might get lost

To get the forward direction, we need to look at 2.5 PED and 2 PED events.

- 2.5 PED Only the track information of the Proton could be reconstructed.
 - Same event selection and background subtraction as 3 PED.

- 3 PED $\,$ measured all final states: 2 γ and proton
 - in forward directions proton might get lost

To get the forward direction, we need to look at 2.5 PED and 2 PED events.

- 2.5 PED Only the track information of the Proton could be reconstructed.
 - Same event selection and background subtraction as 3 PED.
 - 2 PED Proton could not be measured
 - Direction can be reconstructed, since initial state is known
 - Some cuts can not be used

T Combined

T Combined

-

Thank you for your attention!

[1] C. Honisch et al. 'The new APD-Based Readout of the Crystal Barrel Calorimeter - An Overview' (forthcoming)

[2] J. Hartmann et al., PLB 748, 212 (2015)

University of Bonn

Sebastian Ciupka

T, P and H in $\gamma p \rightarrow p \pi^0$

Cut Ranges

E=640 MeV

Cut-ranges

Coplanarity lower and upper cut

Universit	v of Bonn
	,

Cut-ranges 2

Theata difference lower and upper cut

University of Bo
