Performance of the BigBite Calorimeter during $SBS-G_M^n$ Experiment

Provakar Datta

(On behalf of the SBS Collaboration)

Frontiers and Careers in N&H Physics, 08/06/2022

SBS- G_M^n Experiment: Theory & Motivation

- Ran in Jefferson Lab's Experimental Hall A from Fall 2021 to February 2022.
- **Coal:** High precision measurement of G_M^n at $Q^2 = 3, 4.5, 7.5, 10 \& 13.6 (GeV/c)^2$.

Jefferson Lab Frontiers and Careers in N&H Physics, 08/06/2022

$SBS-G_M^n$ Experiment: Technique

Jefferson Lab

- Simultaneous detection of elastically scattered electrons and nucleons.
- 3 major steps to get G_M^n :
 - 1 Extracting QE cross section ratio, R'', directly from the experiment:

$$R'' = \frac{\frac{d\sigma}{d\Omega}|_{d(e,e'n)}}{\frac{d\sigma}{d\Omega}|_{d(e,e'p)}}$$

2 Apply nuclear corrections to obtain:

$$R' = \frac{\frac{d\sigma}{d\Omega}|_{n(e,e')}}{\frac{d\sigma}{d\Omega}|_{p(e,e')}} \equiv \frac{\frac{\sigma_{Mott}}{1+\tau} \left(G_E^{n\ 2} + \frac{\tau}{\epsilon}G_M^{n\ 2}\right)}{\frac{d\sigma}{d\Omega}|_{p(e,e')}}$$

Finally,

$$G_{M}^{n} = -\left[\frac{1}{\tau}\frac{d\sigma}{d\Omega}\right|_{p(e,e')} \frac{R'}{r} - \frac{\epsilon}{\tau}G_{E}^{n\,2}\right]^{\frac{1}{2}}$$

SBS G_M^n Experimental Setup (JLab Hall A)

Bird's eye view of Jefferson Lab's Experimental Hall A during SBS installation (Summer 2021).

Each spectrometer weigh ~ 50 Tons.

43,000+ detector readout channels.

The BigBite Calorimeter

- The BigBite Spectrometer was used to detect and fully characterize the kinematics of the scattered e⁻s.
- The BigBite Calorimeter A.K.A. BBCAL is an integral part of it. BBCAL has two parts:
 - Pre-Shower (PS) Calorimeter
 - Shower (SH) Calorimeter

Jefferson Lab

The BigBite Spectrometer in Hall A (Side View)

Design: Pre-Shower (PS)

	+y , av	way fro eamline	+z ,towards m particle motion
26	51	50	+x,towards the
25	49	48	bollon of PS
24	47	46	
23	45	44	
22	43	42	
21	41	40	Side
20	39	38	
19	37	36	
18	35	34	
17	33	32	
16	31	30	
15	29	28	
14	27	26	
13	25	24	
12	23	22	
11	21	20	I HIM
10	19	18	
9	17	16	
8	15	14	
7	13	12	
6	11	10	
5	9	8	
4	7	6	
3	5	4	
2	3	2	
1	1	0	OK11
	2	1	

Jefferson Lab

UFONN

- PS is made of 52 rad-hard lead-glass blocks.
- Signals generated in each block are readout by a PMT.
- Block dimension: 9 x 9 x 29.5 cm³
- Blocks are stacked in 26 rows of 2 columns facing each other.
- mu-metal shielding around each block.

Design: Shower (SH)

Jefferson Lab

- BB Shower is made of 189 lead-glass blocks.
- Signals generated in each block are readout by a PMT.
- Block dimension: 8.5 x 8.5 x 34 cm³
- Blocks are stacked in 27 rows of 7 columns facing the spectrometer axis.
- mu-metal shielding outside & between rows.

Basic Working & Purpose

- High energy *e*⁻s lose energy in lead-glass by the formation of **electromagnetic shower**.
 - \circ PS thickness is not enough to stop them. So, e^-s deposit only a fraction of their energy in it.
 - \circ SH, on the other hand, define the 'End of the road' for incoming e^-s by containing them fully.
- Primary uses of BBCAL:
 - 1. Measures the scattered e^- energy and crudely determines the track position.
 - 2. Provides handle for pion background rejection (PS energy deposit is used for this purpose).
 - 3. Provides trigger for the BigBite spectrometer.
 - 4. Gives constraint for the track search region.

1. Energy Measurement

Detect, Digitize, & Convert (from mV to GeV) the signal produced by EM shower in PS and SH modules.

Jefferson Lab

SBS-4, SBS 30% field Data

2. pion Background Rejection

Jefferson Lab

- pions produce MIP like signal in PS modules in the momentum range of interest.
- Peak due to pions is easily distinguishable from the e⁻ peak.
- Hence, a simple cut on the PS energy can reject significant number of pions.
- One can also use pion peak positions to check the quality of PS calibration.

3. BigBite Trigger: Logic & Implementation

rigger Sums Associated SH and PS rows						
SC 25-26	SH 26 + SH 27 + PS 25 + PS 26					
SC 24-25	SH 25 + SH 26 + PS 24 + PS 25					
SC 23-24	SH 24 + SH 25 + PS 23 + PS 24					
SC 22-23	SH 23 + SH 24 + PS 22 + PS 23					
SC 21-22	SH 22 + SH 23 + PS 21 + PS 22					
SC 20-21	SH 21 + SH 22 + PS 20 + PS 21					
SC 19-20	SH 20 + SH 21 + PS 19 + PS 20					
SC 18-19	SH 18 + SH 19 + SH 20 + PS 18 -	+ PS 19				
SC 17-18	SH 17 + SH 18 + SH 19 + PS 17 -	+ PS 18				
SC 16-17	SH 16 + SH 17 + SH 18 + PS 16 -	+ PS 17				
SC 15-16	SH 15 + SH 16 + SH 17 + PS 15 -	+ PS 16				
SC 14-15	SH 14 + SH 15 + SH 16 + PS 14 -	+ PS 15				
SC 13-14	SH 13 + SH 14 + SH 15 + PS 13 -	+ PS 14				
SC 12-13	SH 12 + SH 13 + SH 14 + PS 12 -	+ PS 13				
SC 11-12	SH 11 + SH 12 + SH 13 + PS 11 +	- PS 12				
SC 10-11	SH 10 + SH 11 + SH 12 + PS 10 +	+ PS 11				
SC 9-10	SH 9 + SH 10 + SH 11 + PS 9 + P	'S 10				
SC 8-9	SH 8 + SH 9 + SH 10 + PS 8 + PS	S 9				
SC 7-8	SH 7 + SH 8 + PS 7 + PS 8					
SC 6-7	SH 6 + SH 7 + PS 6 + PS 7					
SC 5-6	SH 5 + SH 6 + PS 5 + PS 6					
SC 4-5	SH 4 + SH 5 + PS 4 + PS 5					
SC 3-4	SH 3 + SH 4 + PS 3 + PS 4					
SC 2-3	SH 2 + SH 3 + PS 2 + PS 3					
SC 1-2	SH 1 + SH 2 + PS 1 + PS 2					

- Overlapping SH and PS row sums constitute the trigger logic.
- Logical OR of all the discriminated sums make the final trigger.

BBCAL Front-End

BigBite Trigger: Performance

BBCal Trigger Sums vs BBSH rows

All the trigger sums associated to same SH row, fire uniformly.

* https://logbooks.jlab.org/entry/3927778

4. Constraint for Track Search Region

- We reconstruct scattered e⁻ tracks in BigBite backwards.
- First, we define a search region around SH cluster position.
- Then propagate that region to all the GEM layers and search for tracks within.
- SH cluster position also gives starting vertical position and vertical angle for track search.

Jefferson Lab

- This utility of BBCAL makes replay possible for SBS experiments!
- The constraint reduces the search region to 2-3% of the entire GEM active area.
- Good BBCAL energy calibration is necessary to use this feature.
- Better calibration lets us optimize the search region which in turn improves the reconstruction efficiency significantly.

Energy Resolution: Preliminary Results

 E_{clus}/p_{rec} Distribution E_{clus}/p_{rec} vs. p_{rec} 140 E_{clus}/p_{rec} 120 10⁴ Cosmic, Res. 9.8% -- Beam, Res. 5.9% 100 10³ 80 10² 60 10 40 2.5 3.5 2.5 3.5 20 **p**_{rec} **p**_{rec} **Beam Calibration Cosmic Calibration** 8.2 0.8 1.2 1.4 0.6 1.6 0.4 1

- Initially we see a strong negative correlation between E_{clus}/p_{rec} and p_{rec} which almost disappears with just 1st round of calibration with beam.
- Energy resolution improves drastically with beam calibration.

Jefferson Lab

Energy & Time Resolutions: Preliminary Results contd.

Configuration	E _{beam} (GeV)	E _{e'} (GeV)	Magnet Current (A)		BBCAL Resolution (%)	
Configuration			BB	SBS	Before Calib.	After Calib.
	3.728	2.11	750	0	8.9	6.5
SBS-4			750	630	8.6	6.6
			750	1050	9.5	6.6
SBS-7	7.906	2.67	750	1785	9.4	6.8
CDC 11	0.01	2.67	750	0	12.3	7.8
303-11	9.91		750	2100	12.2	7.9
SPS 14	5.965	2.00	750	0	10.5	7.8
565-14			750	1470	10.7	7.3
	5.965	3.59	750	0	9.8	6.0
			750	1050	9.8	5.8
303-0			750	1470	9.8	5.9
			750	2100	9.8	5.9
SBS-9	4.015	1.63	750	1470	9.7	7.8

Table I: BBCAL energy resolution before and after calibration for all SBS configurations.

- Completed initial calibration of all 13 different settings across 6 SBS configurations.
- Achieved 5.9% energy resolution at 3.6 GeV scattered e⁻ energy.
- Work in progress for the most challenging setting (SBS-11).
- Apart from energy resolution, we also could achieve ~ 2.5 ns time resolution.

First Look at Production Data $[Q^2 = 3 (GeV/c)^2]$

- Primary Cuts:
 - 1. No. of tracks per event = 1
 - 2. No. of GEM layers that had hit > 3
 - 3. $|(vertex)_z| < 0.08 \text{ m}$
 - 4. PS cluster energy > 0.2 GeV
 - 5. SH + PS cluster energy > 1.7 GeV
 - 6. |E/p 0.92| < 0.2
 - 7. HCAL cluster energy > 0.02 GeV
 - 8. |HCAL-BBCAL coin 510| < 10 ns
- Choosing only elastic (LH2) or QE (LD2) events: 0.7 < W < 1.12.

UCONN Jefferson Lab

- SBS G_M^n installation and running had a lot of challenges:
 - Failure of Hall A overhead crane.
 - Limited manpower due to COVID.
 - Several configuration changes during run. [Configuration change means moving and aligning ~50 Ton spectrometers in a very short amount of time!]
 - Largest installation of GEMs in the country till date had massive DAQ, hardware, and software related challenges associated with it.
 - o et cetera..

Jefferson Lab

- But we could overcome all these challenges by working as a team. Thanks to the tireless work of Hall A technicians, Graduate students, Post Docs, JLab Staff Scientists, and Professors.
- We are currently calibrating our detectors. Performance of all the detector subsystems look very good even with very preliminary calibration. E.g., for BBCAL, we could achieve 5.9% energy resolution (at 3.6 GeV e⁻ energy) and 2.6 ns time resolution.
- A significant effort of data analysis is ongoing. Preliminary results look promising.
- Results of SBS G_M^n i.e., high precision values of G_M^n at unexplored Q^2 regime will guide GPD formalism, benchmark LQCD, and provide more insight into nucleon quark flavor decomposition.
- Acknowledgement: This work is supported by the US Department of Energy Office of Science, Office of Nuclear Physics, Award ID DE-SC0021200.

Backup Slides

Analysis Flowchart

UCONN Jefferson Lab

Frontiers and Careers in N&H Physics, 08/06/2022

Kinematic Parameters for $Q^2 = 3 (GeV/c)^2$

> Magnet Settings:

≻ BB 750A

Jefferson Lab

> SBS 0A, 630A (30%) & 1050A (50%)

> Kinematic parameters:

- Beam energy: 3.7278 GeV
- > Beam current: 1.75 μ A
- ➢ BB angle: 36 deg
- SBS angle: 31.9 deg
- BB magnet distance: 1.80 m
- HCAL distance: 11 m
- Runs Used: All SBS 30% & 50% LD2 runs for SBS4 listed in the good run list.

GEANT4 simulation of SBS4 configuration using g4sbs.

Invariant Mass Distributions in Comparison

Cosmic Peaks – PS and SH

Cosmic Calibration

Two primary methos of calibration – 1. Cosmic Calibration & 2. Beam Calibration (using LH₂)

- Perform HV scan over a broad range.
- Get α by fitting Peak Position vs. HV plot, using: Peak Pos. = const × HV^{α}
- Only need to do this once since α value for a PMT should be stable.

- Take a cosmic run with enough events.
- Fit the ADC amplitude distributions and extract peak positions for individual SH and PS blocks.

Generate new HV settings that align Peak positions at the trigger to target ADC amplitude, using:

 $HV_{new} = HV_{old} \left[\frac{\text{Target ADC Amp.}}{\text{Current ADC Amp.}} \right]^{\frac{1}{2}}$

Beam Calibration: Procedure

> Method:

> χ^2 minimization:

Jefferson Lab

$$\chi^{2} = \sum_{i=1}^{N} \left(E_{e}^{i} - \sum_{k=0}^{M} C_{k} A_{k}^{i} \right)^{2},$$
$$= \sum_{i=1}^{N} \left(\left(E_{e}^{i} \right)^{2} + \left(\sum_{k=0}^{M} C_{k} A_{k}^{i} \right)^{2} - 2E_{e}^{i} \sum_{k=0}^{M} C_{k} A_{k}^{i} \right)$$

> Minimizing χ^2 with respect to the coefficients:

$$\frac{\partial \chi^2}{\partial C_j} = 0 \Rightarrow \sum_{i=1}^N \sum_{k,j=0}^M \left(\begin{array}{c} A_j - C_k \frac{A_k A_j}{E_e} \\ \downarrow & \downarrow \\ B & C \end{array} \right)_i = 0$$

> Solving *M* linear equations to get the C_j s:

$$C = M^{-1}B$$

- E_e^i : Track momentum at i^{th} event.
- A_e^i : Energy deposited in k^{th} block at i^{th} event.
- C_k : Gain coefficients.
- N: Number of events.
- M: Number of Shower blocks.

Primary Cuts

- 1. No. of tracks per event = 1
- 2. No. of GEM planes that had hit > 3
- 3. $|(vertex)_z| < 0.08 \text{ m}$
- 4. HCAL cluster energy > 0.025 GeV
- 5. PS cluster energy > 0.2 GeV
- 6. SH + PS cluster energy > 1.9 GeV
- 7. |E/p − 1| < 0.3
- 8. $2.1 < p_{rec} < 3.0$ (GeV)

ADC Time Resolution: Preliminary Results

- Left Plot: Shows results of ADC time offset correction for individual shower blocks w.r.t BBHodo cluster mean time. Similar results were achieved for Pre-Shower modules as well.
- Right Plot: Shows the distribution of the difference between BBHodo cluster mean time and ADC time of all blocks of the corresponding SH cluster. Resolution achieved: 2.62 ns (Preliminary).
- Time walk corrections are yet to be implemented.

Jefferson Lab

ADC time calculation

Jefferson Lab

• "i" is the sample which has value greater than V_{Mid} and the next sample, "i+1", is less than V_{Mid} .

Study of the Linear Region of Operation for all the Electronic Modules involved in BigBite Calorimeter Circuit

P. Datta^a, A. Tadepalli^b, M. Jones^b

^aUniversity of Connecticut, Storrs, CT 06269, USA ^bThomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA

1. Introduction

In this article, we report the linear region of operation for all the electronic modules involved in BigBite calorimeter (BBCal) circuit. BBCal consists of a Shower (SH) and a Pre-Shower (PS) detector. We have considered the electronic modules involved in the circuits of each of these two parts separately and have come up with a maximum signal amplitude at FADC for the HV calibration using cosmics to avoid saturation during all the proposed Q^2 points of SBS G_{R}^{*} experiment.

Figure 1: 7 channel Shower am-

plifier/summer module

2. Saturation of Electronic Modules

- BigBite Shower Signals from SH PMTs go through the following steps 1,
- Signal from the detector goes into custom made Summer/Amplifier (S/A) module via 12.5 m cable.
- These S/A modules have one-to-one outputs on the back with an approximate gain of 5x. Signals from these output channels go to the FADC via 50m long signal cable.
- The S/A modules also have three outputs per sub-module on the front, each of which gives the amplified (3.5x) sum of 7 inputs (i.e. all the inputs from a single SH row).
- 4. Each such summed outputs then goes into a quad of PS 740 LFI/FO module, where the overlapping row sum for SH and PS takes places in order to form the trigger logic.
- Each of the modules mentioned in the above steps have their own saturation point i.e. the output becomes non-linear when the input amplitude crosses some value. A rough estimation of those saturation points are as follows,
- The outputs on the back of S/A modules saturate when the input crosses 200 mV.
- 2. The outputs on the front of S/A modules saturates at 300 mV.
- 3. 740 PS LFI/FO modules has a single input saturation of 1200 mV.

4. FADC 250 saturates at input beyond 2 V.

UCONN Jefferson Lab

It is clear from the above facts that for SH, the saturation is determined by the back outputs of S/A modules. Hence the detector should be calibrated in such a way so that the amplitude of the input signal to S/A modules do not cross 200 mV.

https://sbs.jlab.org/DocDB/0001/000118/001/BBCal_s ig_circuit_saturation.pdf

0 A ++ m-Pull requests Issues Marketplace Explore provakar1994 / BBCal_replay Public S Unpin ⊙ Unwatch 1 + ¥ Fork 0 ☆ Star 0 + 🔿 Code 💿 Issues 🏦 Pull requests 💿 Actions 📅 Projects 💷 Wiki 💿 Security 🗠 Insights 🚳 Settings 8 P master - P1branch O0 tags About Go to file Add file * Code -Calibration and analysis scripts for BigBite Calorimeter (BBCal) that is being Provakar Datta Added recommended variable settings for all the different co... and 6224241 on May 12 S 156 commits used for JLab Hall A SBS collaboration golden Run list for BBCal HV scan performed on 11/04/2022 added. 3 months ago experiments macros Added recommended variable settings for all the different configur... last month CC Readme ☆ O stars replay BBCal standalone replay machinary added 7 months ago ③ 1 watching .gitignore .pcm catagory added 5 months ago ₽ 0 forks README.md Update README md 3 months ago get_calibrated_hv.sh 7 months ago Shell scripts for cosmic analysis and gain matching added Releases run_cosmic_analysis.sh Shell scripts for cosmic analysis and gain matching added 7 months ago No releases published Create a new release run_cosmic_replay.sh Shell scripts for cosmic analysis and gain matching added 7 months ago setup_bbcal.sh Setup file for a-oni account added 7 months ago Packages setup_ifarm.csh Environment setup file for ifarm account added 5 months ago No packages published

https://github.com/provakar1994/BBCal_replay

Frontiers and Careers in N&H Physics, 08/06/2022