Mapping the Mean-Field to SRC Transition

Andrew Denniston

MIT

August 6^{th} , 2022

$$\mathbf{x}_{\mathrm{B}} \equiv \frac{\mathbf{Q}^2}{2m_N\omega} = \frac{q^2 - \omega^2}{2m_N\omega}$$

• Schmookler Nature (2019)

• Schmookler Nature (2019)

• Schmookler Nature (2019)

 $\mathbf{x}_{\mathrm{B}} \equiv \frac{\mathbf{Q}^2}{2m_N\omega} = \frac{q^2 - \omega^2}{2m_N\omega}$ ⁸

We need low x_B

Weiss, PRC Lett. (2021)

$$\mathbf{x}_{\mathrm{B}} \equiv \frac{\mathbf{Q}^2}{2m_N\omega} = \frac{q^2 - \omega^2}{2m_N\omega}$$

We need low x_B

• Weiss, PRC Lett. (2021)

$$\mathbf{x}_{\mathrm{B}} \equiv \frac{\mathbf{Q}^{2}}{2m_{N}\omega} = \frac{q^{2} - \omega^{2}}{2m_{N}\omega}$$

• Schmookler Nature (2019)

 $\mathbf{x}_{\mathrm{B}} \equiv \frac{\mathbf{Q}^2}{2m_N\omega} = \frac{q^2 - \omega^2}{2m_N\omega}$

• Schmookler Nature (2019)

 $\mathbf{x}_{\mathrm{B}} \equiv \frac{\mathbf{Q}^2}{2m_N\omega} = \frac{q^2 - \omega^2}{2m_N\omega}$

• Schmookler Nature (2019)

$$\mathbf{x}_{\mathrm{B}} \equiv \frac{\mathbf{Q}^2}{2m_N\omega} = \frac{q^2 - \omega^2}{2m_N\omega}$$

(e,e') to (e,e'p)

Mean-field to SRC Transition (e,e'p)

Initial Proton Momentum

This Analysis

CLAS eg2

- 5 GeV
- (e,e'p)
 d, ¹²C, ²⁷Al,
 ⁵⁶Fe, ²⁰⁸Pb

- Frankfurt, Sargsian, and Strikman PRC (1997)
- Colle, Cosyn, and Ryckebusch, PRC (2016)

 $\begin{array}{ll} 1. & 1.2 < x_B < 2 \\ 2. & 1.5 \; GeV^2 < Q^2 \\ 3. & \theta_{pq} < 25^{\circ} \\ 4. & 0.62 < \frac{p}{q} < 0.96 \\ 5. & 0.8 \; GeV < m_{Miss} < 1.05 \; GeV \\ 6. & 0.3 \; GeV < p_{Miss} < 0.6 \; GeV \end{array}$

- 1. $1.2 < x_B < 2$ 2. $1.5 \ GeV^2 < Q^2$
- 3. $\theta_{pq} < 25^{\circ}$
- 4. $0.62 < \frac{p}{q} < 0.96$
- 5. $0.8 \ GeV < m_{Miss} < 1.05 \ GeV$
- 6. $0.3 \ GeV < p_{Miss} < 0.6 \ GeV$

- Physics Letters B 722 (2013) 63–68
- Science 346, 614 (2014)
- Nature 560, 617–621 (2018)
- Physics Letters B 797 (2019) 134792
- Cohen et al. Phys. Rev. Lett. 121, 092501 2018
- Duer et al. Phys. Rev. Lett. 122, 172502 2019

We need low x_B

• Weiss, PRC Lett. (2021)

$$x_{\rm B} \equiv \frac{Q^2}{2m_N\omega} = \frac{q^2 - \omega^2}{2m_N\omega}$$

 $0.3 < p_{miss} < 0.6[GeV/c]$

Angle Between \vec{q} and \vec{p}_{miss}

Correction Factors

- Transparency
- Coulomb
- Radiative
- Acceptance

Nucleus	Transparency	Uncertainty $[1\sigma]$
Deuteron	1	0
Carbon	0.53	0.052
Al	0.43	0.05
Fe	0.34	0.04
Pb	0.22	0.03

All Nuclei Scale for (e,e'p)

Mean Field Contribution

- 1. $1.5 \ GeV^2 < Q^2$
- 2. $\theta_{pq} < 25^{\circ}$
- 3. $0.8 \ GeV < m_{Miss} < 1.05 \ GeV$
- 4. $0.3 \ GeV < p_{Miss} < 0.6 \ GeV$
- *5.* $\theta_{miss,q}(x_B)$ Cut

Mean Field Contribution

Mean-field to SRC Transition

Mean-field to SRC Transition

Mean-field Contribution

Three Domains of the Nucleus

Conclusion

• We have observed SRC scaling below the inclusive limit.

Conclusion

- We have observed SRC scaling below the inclusive limit.
- The extended kinematic range allows us to probe the SRC transition.

Conclusion

- We have observed SRC scaling below the inclusive limit.
- The extended kinematic range allows us to probe the SRC transition.
- We can now look at the onset of SRCs and separate the momentum distribution in to 3 domains.

Thank you

Backup Slides

Results Table

Results Table

Target	Measured	Overall Systematic Uncertainty	a_2
Carbon	4.39 ± 0.07	$\pm 10\%$	4.49 ± 0.17
Aluminum	4.68 ± 0.09	$\pm 12\%$	4.86 ± 0.18
Iron	5.06 ± 0.10	$\pm 12\%$	4.81 ± 0.22
Lead	4.85 ± 0.12	$\pm 14\%$	4.89 ± 0.20

Systematic Uncertainties

Cut Type	Nominal Value	1σ
p_{miss} minimum	$0.3 \; [{\rm GeV/c}]$	0.015
p_{miss} maximum	$0.6 [{ m GeV/c}]$	0.015
M_{miss} minimum	$0.8 \; [{ m GeV}/c^2]$	0.05
M_{miss} maximum	$1.05 \; [{ m GeV}/c^2]$	0.05
Θ_{PQ}	25°	0.5°
Q^2	$1.5 \; [({\rm GeV}/c)^2]$	0.01

Source	Per-Bin	Overall
Beam Charge	-	1%
Target Thickness	-	$\sim 1.5\%$
Acceptance Correction	$\sim 2.5\% - 10\%$	-
Radiative Correction	< 1%	5%
Coulomb Correction	< 3%	-
Nuclear Transparency	-	10-15%
Deuteron Merging	-	$\leq 1.5\%$
Event Selection	5%-12%	-
Total	7%-16%	$\sim 11 - 16\%$

Deuterium

• $0.3 \; GeV < p_{Miss} < 0.6 \; GeV$

¹²C

• $0.3 \; GeV < p_{Miss} < 0.6 \; GeV$

Missing Mass

The Elastic Contribution

- Ciofi & Simula, PRC (1996) ٠
- Weiss, PRC Lett. (2021) ٠

$$\mathbf{x}_{\mathrm{B}} \equiv \frac{\mathbf{Q}^2}{2m_N\omega} = \frac{q^2 - \omega^2}{2m_N\omega}$$

