

This work was supported by the US Department of Energy Office of Science, Office of Nuclear Physics, under contract no. DE-SC0016583.

Sara Ratliff Frontiers and Careers in Nuclear and Hadronic Physics August 6th, 2022

The EMC Effect

DIS cross sections on nuclei differ from those on free nucleons

EMC: Mean Field v. Few Nucleon Explanation

Free Nucleons

EMC: Mean Field v. Few Nucleon Explanation

Free Nucleons

Mean-Field

EMC: Mean Field v. Few Nucleon Explanation

Free Nucleons

Mean-Field

Short Range Correlations

- $\sim 20\%$ of nucleons
- Closely associated nucleons
 - Closer than average nucleon radius
- Large relative momentum $(>k_F)$, lower CM momentum
- ~90% of SRCs are neutron-proton (np) pairs

SRC-EMC Hypothesis The prediction that the modification of the EMC effect is due to interactions within SRCs

Schmookler, *Nature* **566** (2019)

SRCs: SRC-EMC Hypothesis The prediction that the modification of the EMC effect is due to interactions within SRCs

Schmookler, *Nature* **566** (2019)

- Deep inelastic scattering from a member of an SRC pair
- The correlated partner of the struck nucleon will recoil
- correlated pair can be extracted

• By detecting this recoiling nucleon, information about the state of the

SRCs: Recoil-Tagged DIS New Variables

- Spectator light-cone momentum fraction "Degree of Correlation"
- Updated value of x for a moving nucleon "Quark Motion"

n fraction $\alpha_s = (E_s - p_s^z)/m_s$ nucleon $x' = \frac{Q^2}{2q \cdot (p_{pair} - p_s)}$

BAND Experiment

JLab Hall B Run Group B (2019-2020)

- Jefferson Lab Hall B
 - Prioritizes High Acceptance
- Recoiling Neutrons
- Quarks in Protons

- Jefferson Lab Hall C
 - Prioritizing High Resolution
- Recoiling Protons
- Quarks in Neutrons

Backward-Angle Neutron Detector

- 2 m x 1.5 m
- Made of plastic scintillators, with a veto layer
- Placed upstream of the target to detect backward scattered neutrons

Observable of Interest

Want to look at bound/free structure

$$\mathcal{R} = \left(\frac{d\sigma^{data}(x', \alpha_s)}{d\sigma^{data}(x'_{ref}, \alpha_s)} \right)$$

Input from data:

- Same target and beam: luminosity cancels
- Different kinematics: acceptance and radiative effects don't cancel

 $\left(\frac{d\sigma^{sim}(x',\alpha_s)}{d\sigma^{sim}(x'_{rof},\alpha_s)}\right)$

Input from simulation:

 Correct for acceptance, radiative effects

Background

- Significant contributions from random coincidence background
- Can be estimated from off-time region
- Look at background rates against kinematic variables using "eventmixing"

Neutron Candidates in BAND

- 2 GeV deuterium data collected in SRC-CLAS12 2021 Experimental run
- Quasielastic proton knock-out
- (e, e'pn)/(e, e'p)n points-to-BAND

BAND Efficiency

Current State of Analysis

• Finalizing results, going through CLAS review

Preliminary results will be shown and discussed at GRC

Tuesday

11:50 am - 12:10 pm

Tyler Kutz (Massachusetts Institute of Technology, United States) "Bound Proton Structure from Neutron-tagged DIS and SIDIS Measurements"

Conclusions

BAND analysis results will be coming soon

These results will help us definitively test the EMC-SRC Hypothesis

