Jefferson Lab

The Proposed Deuteron Charge Radius Experiment (DRad) at Jefferson Lab

Spokespersons (A. Gasparian, H. Gao, D. Dutta, N. Liyanage, D. Higinbotham \& E. Pasyuk)
> Jingyi Zhou > Duke University
For the DRad Collaboration
2022 Frontiers and Careers in Nuclear and Hadronic Physics

Outline

- Introduction and deuteron charge radius puzzle
- DRad experimental apparatus
- Studies for the DRad experiment
- Summary and Outlook

Deuteron

- The simplest and lightest nucleus in nature
- The only bound two-nucleon system
- Excellent laboratory to study QCD in nuclei, and effective neutron target
- Various theoretical calculations

- Deuteron rms charge radius: an ideal observable to compare experiments with theories

Hydrogen-2,
deuterium
mass number: 2

$$
r_{d} \equiv \sqrt{\left\langle r_{d}^{2}\right\rangle} \equiv \sqrt{-\left.6 \frac{d G_{C}^{d}\left(Q^{2}\right)}{d Q^{2}}\right|_{Q^{2}=0}}
$$

$Q^{2}:$ Four momentum transfer
$\mathrm{G}_{\mathrm{C}}^{\mathrm{d}}:$ Deuteron charge form factor

Deuteron rms charge radius from unpolarized e-d elastic scattering

- In the Born approximation (one photon exchange):

$$
\frac{d \sigma}{d \Omega}=\left(\frac{d \sigma}{d \Omega}\right)_{M o t t}\left[A\left(Q^{2}\right)+B\left(Q^{2}\right) \tan ^{2} \frac{\theta}{2}\right] \quad Q^{2}=4 E E^{\prime} \sin ^{2}(\theta / 2)
$$

A and B are structure functions related to the deuteron charge $\left(G_{C}^{d}\right)$, magnetic ($\mathrm{G}_{\mathrm{M}}^{d}$) and quadrupole ($\mathrm{G}_{\mathrm{Q}}^{d}$) form factors:

$$
\begin{aligned}
& A\left(Q^{2}\right)=\mathrm{G}_{\mathrm{C}}^{d^{2}}\left(Q^{2}\right)+\frac{2}{3} \tau \mathrm{G}_{\mathrm{M}}^{d^{2}}\left(Q^{2}\right)+\frac{8}{9} \tau^{2} \mathrm{G}_{\mathrm{Q}}^{d^{2}}\left(Q^{2}\right) \\
& B\left(Q^{2}\right)=\frac{4}{3} \tau(1+\tau) \mathrm{G}_{\mathrm{M}}^{d^{2}}\left(Q^{2}\right) \quad \tau=Q^{2} /\left(4 M_{d}^{2}\right)
\end{aligned}
$$

- At very low $Q^{2}(\mathrm{DRad})$, cross section dominated by G_{C}^{d}, one may extract G_{C}^{d} assuming G_{M}^{d} and $\mathrm{G}_{\mathrm{Q}}^{d}$ in certain forms.
- The rms charge radius can be obtained from the slope of the charge form factor G_{C}^{d} at $Q^{2}=0$:

$$
r_{d} \equiv \sqrt{\left\langle r_{d}^{2}\right\rangle} \equiv \sqrt{-\left.6 \frac{d G_{C}^{d}\left(Q^{2}\right)}{d Q^{2}}\right|_{Q^{2}=0}}
$$

The deuteron charge radius puzzle

Independent of the famous "Proton Charge Radius Puzzle"

- $\sim 6 \sigma$ discrepancy between μD spectroscopy results and CODATA-2014 value
- Uncertainties in previous e-d experiments are too large to resolve the puzzle

Previous e-d scattering Experiments at Low \boldsymbol{Q}^{2} Range

Four experiments had been used for the modern extraction of deuteron charge radius from e-d elastic scattering:
R.W. Berard et al. Phys. Rev. Lett. B47,355 (1973):

Used cooled H2 and D2 gas to measured ratio of ed/ep cross sections
$Q^{2}=\left[4 \times 10^{-2}-5 \times 10^{-2}\right] \mathrm{fm}^{-2}$

- G.G. Simon et al. Nucl. Phys. A364, 285 (1981):
different gas and liquid targets:
$\mathrm{Q}^{2}=\left[4 \times 10^{-2}-4\right] \mathrm{fm}^{-2}$
■ S. Platchkov, et al. Nucl. Phys. A510, 740, (1990) different LH2 and LD2 targets
$\mathrm{Q}^{2}=\left[5 \times 10^{-2}-20\right] \mathrm{fm}^{-2}$
Mainz experiment: Initial State Radiation(ISR): $\mathrm{Q}^{2}=\left[5 \times 10^{-2}-7\right] \mathrm{fm}^{-2}$

Previous experiments used:

- magnetic spectrometer method;
- different types of targets;

$$
\mathrm{Q}^{2}=\left[5 \times 10^{-3}-1.3\right] \mathrm{fm}^{-2}
$$

- normalized $e-d$ to $e-p$ cross sections;
- Initial state radiation

We propose a new independent method to measure $e-d$ elastic cross sections with high accuracy.

The highlight of DRad experiment

DRad proposal: PR12-20-006

- Measure $e-d$ elastic cross sections at very low Q^{2} range: $\left[5 \times 10^{-3}-1.3\right] \mathrm{fm}^{-2}$.
- Two beam energies, $\mathrm{E}=1.1$ and 2.2 GeV to increase Q^{2}
 range and control systematics.
- Experimental method based on PRad method and upgraded PRad-II (PR12-20-004):
[W. Xiong et al. Nature 466 (2010) 213-216; H. Gao and M. Vanderhaeghen, Rev. Mod. Phys. 94, 015002]
- Magnetic-spectrometer-free calorimetric experiment;
- Windowless deuterium/hydrogen gas flow target to reduce background;
- Two planes of tracking detector for better scattered electron tracking (PRad-II);
- Cylindrical recoil detector for reaction elasticity (new);
- Veto counters for timing (PrimEx veto counters)
- That will allow:
$>$ Measure cross sections in one kinematical settings for a large Q^{2} range;
$>$ Simultaneous detection of $e e \rightarrow e e$ Møller scattering process to control systematics;
$>$ Measure e-d elastic cross section to subpercent precision

DRad experiment apparatus

@HallB JLab

- $\theta_{e}=0.6^{\circ}-7^{\circ}$
- $\theta_{d}=83^{\circ}-89^{\circ}$

- Experimental technique based on PRad-II experiment(PR12-20-004), with a new two-layer cylindrical recoil detector for reaction elasticity

DRad experiment apparatus

- remove major background source

DRad experiment apparatus

Si-strip Cylindrical Recoil Detector inside the target cell

Detect recoil particles, provide two major information:

- Timing
- Azimuthal angle

Based on the CLAS12 Barrel Silicon Tracker (SVT)

- 20 panels of twin, single sided Si-strip detectors ($42 \times 52 \mathrm{~mm}^{2}$), 20 sided polygon arrangement with around 13 cm radius

- Thicknesses: $200 \mu \mathrm{~m}$ (inner layer), $300 \mu \mathrm{~m}$ (outer layer)
- 256 strips on each sensor: angular resolution $5 \mathrm{mrad}(\phi) 20 \mathrm{mrad}(\theta)$
- Inactive SiO_{2} layer can be as thin as 0.5 um

DRad experiment apparatus

- 5 m long two stage vacuum chamber, further remove possible background source from the electron multiple scattering
- Vacuum chamber pressure: 0.3 mTorr

DRad experiment apparatus

Tracking detectors

Deııerilım

GEM- μ RWELL

GEM- μ RWELL

- Each GEM plane: two large area GEM chambers, small overlap region in the middle
- Provide excellent tracking for the scattered electrons
- Better control of beam line background from the upstream collimator, especially at very small angles (electron scattering angle less than 1 deg)

DRad experiment apparatus

Upgraded Hybrid Calorimeter (HyCal)

Deuterium
gas

- High resolution and efficiency
- 5.5 m from the target
- Inner $1156 \mathrm{PbWO}_{4}$ modules
- Outer 576 lead-glass modules
- Scattering angle coverage:
$\sim 0.6^{\circ}$ to 7.5°
- Full azimuthal angle coverage

GEM- μ RWELL GEM- μ RWELL plane 1 plane 2

Upgraded HyCal:

- Replace lead-glass modules with PbWO_{4} modules to have more uniform and better resolution, suppress inelastic contribution
- Convert to FADC based readout to increase data taking rate

DRad experiment apparatus

Veto Scintillators

Deuterium
gas

GEM- μ RWELL GEM- μ RWELL plane 1 plane 2

PID and Event selection

Comprehensive Geant4 simulation of the experiment was developed and used for studying the detection thresholds and backgrounds.
\square Proton from breakup vs elastic recoil deuteron (Electro-disintegration rates are < 6% of the elastic rates)

\square Møller event vs e-d elastic event

The robust fitter study for PRad vs DRad

- Used 9 models to reflect various

Ye-2018
Bernauer-2014
Alarcón-2017
Arrington-2007
Arrington-2004
Kelly-2004
Gaussian

Monopole
Dipole

$$
f_{\text {Rational }(1,1)}\left(Q^{2}\right)=p_{0} \frac{1+p_{1}^{a} Q^{2}}{1+p_{1}^{b} Q^{2}} \quad r_{\text {fit }}=\sqrt{6\left(p_{1}^{a}-p_{1}^{b}\right)}
$$

X.Yan et al. PRC98,025204 (2018)

- Limited number of data-driven G_{C}^{d} parameterizations \rightarrow generalize the robustness test method

Abbott I: $G_{C}^{d}\left(Q^{2}\right)=G_{C, 0} \cdot\left[1-\left(\frac{Q}{Q_{C}^{0}}\right)^{2}\right] \cdot\left[1+\sum_{i=1}^{5} a_{c i} Q^{2 i}\right]^{-1}$
Abbott II:
$G_{c}^{d}\left(Q^{2}\right)=\frac{G^{2}\left(Q^{2}\right)}{(2 \tau+1)} \cdot\left[\left(1-\frac{2}{3} \tau\right) g_{00}^{+}+\frac{8}{3} \sqrt{2 \tau} g_{+0}^{+}+\frac{2}{3}(2 \tau-1) g_{+-}^{+}\right]$

Parker: $G_{C}^{d}\left(Q^{2}\right)=G_{C, 0} \cdot\left[1-\left(\frac{Q}{Q_{C}^{0}}\right)^{2}\right] \cdot\left[\prod_{i=1}^{5}\left(1+\left|a_{i}\right| Q^{2}\right)\right]^{-1}$
Sum-of-Gaussian(SOG):

$$
G_{C}^{d}\left(Q^{2}\right)=G_{C, 0} \cdot e^{-\frac{1}{4} Q^{2} \gamma^{2}} \cdot \sum_{i=1}^{N} \frac{A_{i}}{1+2 R_{i}^{2} / \gamma^{2}} \cdot\left[\cos \left(Q R_{i}\right)+\frac{2 R_{i}^{2}}{\gamma^{2}} \frac{\sin \left(Q R_{i}\right)}{Q R_{i}}\right]
$$

Model dependent study in r_{d} extraction

- Various functional forms were tested with modern parameterizations of the deuteron form factors, using DRad kinematic range and uncertainties.
- Fixed Rational $(1,3)$ was identified as a robust fitter with lowest uncertainties

$$
=\mathrm{p}_{0} \frac{f_{\text {fixed Rational }(1,3)}\left(\mathrm{Q}^{2}\right)}{1+\mathrm{b}_{1} \mathrm{Q}^{2}+\mathrm{b}_{2, \text { fixed }} \mathrm{Q}^{4}+\mathrm{b}_{3, \text { fixed }} \mathrm{Q}^{6}}
$$

$$
r_{\mathrm{fit}}=\sqrt{6\left(a_{1}-\mathrm{b}_{1}\right)}
$$

J.Zhou et al. PRC103, 024002 (2021)

The recoil detector calibration test at TUNL

- The recoil detector will be calibrated using e-p elastic run on hydrogen and with the $2.5 \sim 13 \mathrm{MeV}$ p/D beam from the Tandem accelerator at TUNL.

Detection efficiency: $\epsilon=\frac{\mathrm{N}_{\text {strip }}}{\mathrm{N}_{\Delta \mathrm{E}}}$

Uncertainty estimation and projection

Item	Uncertainty $(\%)$
Event selection	0.110
Radiative correction	0.090
HyCal response	0.043
Geometric acceptance	0.022
Beam energy	0.008
Total correlated terms	0.13

Item	Uncertainty $(\%)$
Statistical uncertainty	0.05
Total correlated terms	0.13
GEM efficiency	0.03
Inelastic e-d process	0.024
Efficiency of recoil detector	0.15
Total	0.22

The most precise single measurement from e-d elastic scattering

Summary

- We propose a new experiment for the deuteron charge radius measurement to address the "deuteron radius puzzle" in nuclear physics.
- It is based on the PRad and proposed PRad-II experiment for the proton charge radius measurement:
- Magnetic-spectrometer-free calorimetric experiment;
- Windowless deuterium/hydrogen gas flow target to reduce background;
- Cylindrical recoil detector for reaction elasticity;
- Two tracking detectors for scattered electron tracking.
- That will allow:
- Measure cross sections in one kinematical settings for a large Q^{2} range

$$
\left[2 \times 10^{-4}-5 \times 10^{-2}\right](\mathrm{GeV} / \mathrm{c})^{2}
$$

- Simultaneous detection of $e e \rightarrow e e$ Møller scattering process;
- Measure e-d cross section to subprecent precision
- Expected $\boldsymbol{R}_{\boldsymbol{d}}$ uncertainty : 0.22\% (preliminary)
- PRad analysis indicates: backgrounds well understood, proposed uncertainty can be achieved.

Acknowledgment: This work is supported by the U.S. Department of Energy under Contract No. DE-FG02-03ER41231.

