

Production of XYZP states at lepton-proton facilities

Feng-Kun Guo Institute of Theoretical Physics, CAS

Hadron Spectroscopy with a CEBAF Energy Upgrade

16-17 June 2022 Hybrid

- Introduction
- Photoproduction of hidden-charm hadrons
- Estimates of cross sections for CEBAF 24 GeV

Hidden-charm states

XYZP at lepton-proton facilities

Hidden-charm and double-charm states

- Pattern of the *XYZPT* states not understood
- Hints to confinement mechanism?

Current experiments for the hidden-charm particles

• B-factories

- □ From ISR processes
 - Cross sections and selection efficiency are relatively low
- **D** From B decays with $b \rightarrow sc\bar{c}$
 - ▶ Energy region limited: $< m_B m_K \approx 4.8 \text{ GeV}$
 - Final states with 3 or more hadrons: $B \rightarrow K\psi\phi$, $K\psi\omega$, $K\psi\pi\pi$, ... Often difficult due to multi-hadron final states to get unambiguous properties of broad resonances

b

- Hadron colliders
 - $\Box \operatorname{From} \Lambda_b \operatorname{decays} \operatorname{with} b \to sc\bar{c}$
 - ▶ Energy region limited: $< m_{\Lambda_b} m_{\Lambda} \approx 4.8 \text{ GeV}$
 - Final states with 3 or more hadrons
 - Prompt productions: high background

BESIII

- **\square** Energy so far $\lesssim 4.9$ GeV, to be upgraded to 5.6 GeV
- **\Box** Low production rates (radiative transition) for C = + states
- \blacksquare Luminosity: less than $1 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$ above 4 GeV

s

Photoproduction: charm

Figure from D. P. Anderle et al., Front. Phys. 16 (2021) 64701

- Photoproduction: $\sigma(\gamma p \rightarrow J/\psi p) \sim O(1 \text{ nb})$, (no resonant enhancement considered)
- Leptoproduction: cross sections are roughly two orders of magnitude (α) smaller
- Many more open-charm hadrons D and Λ_c

Near-threshold J/ψ production at GlueX

No evidence of P_c in the J/ψ photoproduction at GlueX

GlueX, PRL 122 (2019) 222001

Hidden-charm exotics at COMPASS

• Cross sections: $\sigma(\gamma N \to \tilde{X}\pi N') \times \mathcal{B}(\tilde{X} \to J/\psi\pi^+\pi^-) = (71 \pm 28 \pm 39) \text{ pb}$ $\sigma(\gamma N \to X(3872)N') \times \mathcal{B}(X(3872) \to J/\psi\pi^+\pi^-) < 2.9 \text{ pb} (\text{CL} = 90\%)$

Hidden-charm exotics at COMPASS

F.-K. Guo (ITP, CAS)

XYZP at lepton-proton facilities

8

Coupled-channel effects

• Open-charm channels easier to be produced than $J/\psi p$; thresholds nearby

M.-L. Du, V. Baru, FKG, C. Hanhart, U.-G. Meißner, A. Nefediev, I. Strakovsky, EPJC80(2020)1053

The same mechanism for $J/\psi p \rightarrow J/\psi p$ leads to small scattering length; need to compare with the scattering length from gluon exchanges (ongoing):

$$\left|a^{J=1/2}\right| = 0.2...3.1 \text{ mfm}, \quad \left|a^{J=3/2}\right| = 0.2...3.0 \text{ mfm},$$

See also a recent critical analysis of the VMD model using DSE,

Y.-Z. Yu, S.-Y. Chen, Z.-Q. Yao, D. Binosi, Z.-F. Cui, C. D. Roberts, EPJC81(2021)895 XYZP at lepton-proton facilities

Cross section estimates

- Order-of-magnitude estimates of inclusive lepto-production of near-threshold hadronic molecules
- The cross section can be estimated as e.g., for P_c states

Event generators

 The method has been used to estimate the X(3872) production at hadron colliders; despite the debates regarding the X(3872) structure, correct order of magnitude was reproduced

Artoisenet, Braaten, PRD83(2011)014019; FKG, Meißner, W. Wang, Z. Yang, EPJC74(2014)3063

$\sigma(pp/\bar{p}\rightarrow X)$	[nb]Exp.	$\Lambda = 0.5 \text{ GeV}$	$\Lambda = 1.0 \text{ GeV}$
Tevatron	37-115	7(5)	29(20)
LHC-7	13-39	13~(4)	55 (15)

Albaladejo, FKG, Hanhart et al., CPC41(2017)121001

Cross section estimates

• Charm hadron pairs generated using Pythia6.4

Considered machine configurations

	COMPASS	EicC	US-EIC
lepton energy (GeV)	$\mu^{-}: 200$	$e^{-}: 3.5$	$e^{-}: 20$
proton energy (GeV)	0	20	250
luminosity $(\mathrm{cm}^{-2}\mathrm{s}^{-1})$	2×10^{32}	2×10^{33}	10^{34}

F.-K. Guo (ITP, CAS)

NUMBER OF STREET

Z. Yang, FKG, CPC 45 (2021) 123101

Order-of-magnitude estimates of the semi-inclusive lepto-production of hidden-charm hadronic molecules (in units of pb)

	Constituents	$J^{P(C)}$	COMPASS	EicC	US-EIC
X(3872)	$Dar{D}^*$	1++	19(78)	21(89)	216(904)
$Z_c(3900)^0$	$Dar{D}^*$	1+-	$0.3 \times 10^3 (1.2 \times 10^3)$	$0.4 \times 10^3 (1.3 \times 10^3)$	$3.8 \times 10^3 (14 \times 10^3)$
$Z_c(3900)^+$	$D^{*+}\bar{D}^{0}$	1+	$0.2 \times 10^3 (0.9 \times 10^3)$	$0.3 \times 10^3 (1.0 \times 10^3)$	$2.7 \times 10^3 (9.9 \times 10^3)$
$Z_c(4020)^0$	$D^* ar D^*$	1+-	$0.1 \times 10^3 (0.5 \times 10^3)$	$0.2 \times 10^3 (0.6 \times 10^3)$	$1.7 \times 10^3 (6.3 \times 10^3)$
Z_{cs}^{-}	$D^{*0}D_{s}^{-}$	1+	8.3(29)	19(69)	253(901)
Z_{cs}^{*-}	$D^{*0}D_{s}^{*-}$	1+	6.2(22)	14(51)	192(679)
$P_{c}(4312)$	$\Sigma_c \bar{D}$	1/2-	0.8(4.1)	0.8(4.1)	15(73)
$P_{c}(4440)$	$\Sigma_c \bar{D}^*$	3/2-	0.6(4.3)	0.7(4.7)	11(79)
$P_{c}(4457)$	$\Sigma_c \bar{D}^*$	1/2-	0.5(2.0)	0.6(2.2)	9.9(36)
$P_{c}(4380)$	$\Sigma_c^* \bar{D}$	3/2-	1.6(8.0)	1.6(8.4)	30(155)
$P_{c}(4524)$	$\Sigma_c^* \bar{D}^*$	$1/2^{-}$	0.8(3.6)	0.8(3.9)	14(67)
$P_{c}(4518)$	$\Sigma_c^* \bar{D}^*$	3/2-	1.2(6.6)	1.2(6.9)	22(123)
$P_{c}(4498)$	$\Sigma_c^* ar D^*$	5/2-	1.1(9.3)	1.2(9.8)	21(173)

Semi-inclusive production at CEBAF 24 GeV

P.-P. Shi, FKG, Z. Yang, in preparation

- For beam energy of 24 GeV, the *ep* c.m. energy: 6.77 GeV; too low for Pythia
- Choose a few higher energy points, and extrapolate the results done to 24 GeV
- Rough order-of-magnitude estimates

Semi-inclusive production at CEBAF 24 GeV

THE REAL OWNERS

P.-P. Shi, FKG, Z. Yang, in preparation

- For beam energy of 24 GeV, the *ep* c.m. energy: 6.77 GeV; too low for Pythia
- Choose a few higher energy points, and extrapolate the results done to 24 GeV
- Rough order-of-magnitude estimates

Semi-inclusive production at CEBAF 24 GeV

P.-P. Shi, FKG, Z. Yang, in preparation

Order-of-magnitude estimates of the electro-production cross sections with 24 GeV electron beam

	Constituents	$J^{P(C)}$	$\sigma_X/{ m pb}$
X(3872)	$Dar{D}^*$	1++	3 (11)
$Z_c(3900)^0$	$Dar{D}^*$	1+-	46 (165)
$Z_c(3900)^+$	$D^*\overline{D}$	1+	32 (118)
$P_{c}(4312)$	$\Sigma_c \overline{D}$	1/2-	0.09 (0.45)
$P_c(4440)^+$	$\Sigma_c \bar{D}^*$	3/2-	0.09 (0.53)
$P_c(4457)^+$	$\Sigma_c \bar{D}^*$	1/2-	0.04 (0.26)
$P_c(4380)^+$	$\Sigma_c^* \bar{D}$	3/2-	0.20 (0.84)
$P_{cs}(4459)$	$\Xi_c \overline{D}^*$	3/2-	0.05 (0.31)

- Not surprising the GlueX observed no signal of $P_c: \sigma(\gamma p \to J/\psi p) = \mathcal{O}(1 \text{ nb}) \gg 10^2 \times \sigma(e^-p \to P_c + \text{anything})$, much higher statistics is needed
- With a luminosity of $10^{36} \text{ cm}^{-2} \text{s}^{-1}$, for an integrated luminosity of 10^7 pb^{-1} (?), a large amount of hidden-charm exotics can be produced even after having taken into account branching fractions, e.g., $\mathcal{B}(P_c \to J/\psi p) = \mathcal{O}(1\%)$, $\mathcal{B}(J/\psi \to \ell^+ \ell^-) = 12\%$

F.-K. Guo (ITP, CAS)

More hadronic molecules are expected

Many more hidden-charm pentaquarks as hadronic molecules

X.-K. Dong, FKG, B.-S. Zou, Progr.Phys.41 (2021) 65

XYZP at lepton-proton facilities

More hadronic molecules are expected

- Hadronic molecules easily formed in the hidden-heavyflavor region
- Nontrivial near-threshold structure for S-wave attraction

X.-K. Dong, FKG, B.-S. Zou, PRL126(2021) 152001; Progr.Phys.41 (2021)65; CTP73 (2021) 125201

 Other models also predict higher states

 High-luminosity experiments covering the energy range above 5 GeV are needed

F.-K. Guo (ITP, CAS)

Summary

- Future lepton-proton machines will also contribute a lot to hadron spectroscopy
- Huge amounts of hidden-charm exotic hadrons will be observed at CEBAF 24 GeV for a luminosity of 10³⁶ cm⁻²s⁻¹

Thank you for your attention!