Electro- and Photo-production of XYZ @EIC

UNIVERSITAT DE BARCELONA

- Vincent MATHIEU
 - **U. Barcelona**
- **Joint Physics Analysis Center**
- Hadron Spectroscopy with a CEBAF energy upgrade
 - JLab June 2022

Joint **Physics** Analysis Center

Joint Physics Analysis Center

Miguel Albaladejo **CSIC-Valencia**

Lukasz Bibrzycki Pedagogical University of Kracow

Cesar Fernández Ramírez National Autonomous University of Mexico

Astrid Hiller Blin Tübingen University

Vincent Mathieu

Mikhail Mikasenko TU Munich

Lawrence Ng Florida State University

Alessandro Pilloni U. Messina

Arkaitz Rodas College of William and Mary

Adam Szczepaniak Indiana University

Daniel Winney South China Normal University

Robert Perry National Chiao-Tung University

HadSpec with CEBAF Upgrade

Baryons and Mesons

Ordinary baryons:

Vincent Mathieu

uud proton stable *udd* neutron $\tau \sim 10^3 s$ uds baryon Λ $\tau\sim 10^{-10}s$ ${\it uuu}\,\,{\rm baryon}\,\Delta\,\,\,\tau\sim 10^{-24}\,\,s$

Ordinary mesons

HadSpec with CEBAF Upgrade

Ordinary and Exotic Hadrons

Ordinary baryons:

proton stable $\tau \sim 10^3 s$ neutron

baryon $\Lambda~~\tau\sim 10^{-10}s$

Ordinary mesons

Exotic matter

U	
S	

 $\tau \sim 10^{-8} s$ pion

 $\tau \sim 10^{-8} s$ kaon

 J/ψ $\tau \sim 10^{-20}s$

Vincent Mathieu

HadSpec with CEBAF Upgrade

Pentaguarks candidates from LHCb

Vincent Mathieu

unexplained excess of events in $J/\psi\,p$ spectrum

Cannot be qqq baryon

HadSpec with CEBAF Upgrade

What's a resonance?

Vincent Mathieu

Bound state vs virtual state

 $e^{i2\delta(k)}$ $|k\rangle$ $|k\rangle$

Scattering length

Cross section

$$a = \lim_{k \to 0} \frac{1}{k} \tan \delta(k)$$
$$\sigma = 4\pi a^2$$

Vincent Mathieu

HadSpec with CEBAF Upgrade

$P_{c}(4312)^{+}$ analysis

Bootstrap: generate 10k data

When $J/\psi p$ decouples, pole moves to the real axis on the

Physical sheet - positive scattering length - bound state

Unphysical sheet - negative scattering length - virtual state

Fernández-Ramírez et al (JPAC), PRL123 (2019) 092001

- HadSpec with CEBAF Upgrade

$P_c(4312)^+$ analysis

Bootstrap: generate 10k data

When $J/\psi p$ decouples, pole moves to the real axis on the

Physical sheet - positive scattering length - bound state

Unphysical sheet - negative scattering length - virtual state

Fernández-Ramírez et al (JPAC), PRL123 (2019) 092001

Virtual state in the $\Sigma_c^+ \bar{D}^0$ channel

- 0.7 %
- 99.3 %
- HadSpec with CEBAF Upgrade

$P_c(4312)^+$ analysis

Deep neural network trained with 4 types of amplitudes

Vincent Mathieu

HadSpec with CEBAF Upgrade

Direct production of P_c^+ ?

Estimation of the couplings with VMD

Vincent Mathieu

10⁻¹

HadSpec with CEBAF Upgrade

Data

2

(d),

עזייע) מ(אן

Exp. status of *XYZ*

Vincent Mathieu

HadSpec with CEBAF Upgrade

Discovered in e^+e^- interactions by BESIII

Quantum numbers 1^{+-} (more likely)

Vincent Mathieu

HadSpec with CEBAF Upgrade

Vincent Mathieu

Electro-production of XYZ will help understand them

HadSpec with CEBAF Upgrade

Exclusive $Z_{c,b}^+$ Production @EIC

Vincent Mathieu

JPAC, PRD102 (2020) 114010

HadSpec with CEBAF Upgrade

Exclusive $Z_{c,b}^+$ Production @EIC

C++ code available online (D. Winney)

Implementation in simulation with El-Spectro (D. Glazier)

Vincent Mathieu

JPAC, PRD102 (2020) 114010

HadSpec with CEBAF Upgrade

Semi-inclusive $Z_{c,b}^+$ Production @EIC

Vincent Mathieu

HadSpec with CEBAF Upgrade

X(3872)

Discovered in B decays by Belle $B \rightarrow KX(3872) \rightarrow K(J/\psi\pi\pi)$ Quantum numbers 1^{++} (more likely)

 $\frac{X(3872) \rightarrow J/\psi\omega}{X(3872) \rightarrow J/\psi\rho} = 0.8 \pm 0.3$ Strong isospin violation

Very close to DD^* threshold $M_X - M_{DD^*} = -3 \pm 192$ kev

Observations by independent collaborations $pp \rightarrow X(3872) + anything$ $X(3872) \rightarrow J/\psi \pi \pi$

Challenging interpretation

Vincent Mathieu

XYZ Photoproduction 18

LHCb EPJC72 (2012) 1972

b)

HadSpec with CEBAF Upgrade

Exclusive X(3872) Production @EIC

Vincent Mathieu

JPAC, PRD102 (2020) 114010

TPAC 10^{2} [ub] 10 E $\rightarrow X p$ $\sigma(\gamma p$ 10^{-1} $\chi_{cl}(1P)$ -X(3872) 10^{-2} 4.5 5.5 6.5 5 6 $W_{\gamma p}$ [GeV]

HadSpec with CEBAF Upgrade

Primakoff electro-production of X(3872)

Use Belle measurement of $\Gamma(X \to \gamma \gamma^*)$ to determine the normalization

Ion target enhance cross section as Z^2

Vincent Mathieu

HadSpec with CEBAF Upgrade

JPAC, PRD102 (2020) 114010

Exclusive Y(4260) Production @EIC

Vincent Mathieu

HadSpec with CEBAF Upgrade

JPAC, PRD102 (2020) 114010

Summary

Direct photoproduction of P_c :

Vincent Mathieu

Exclusive and inclusive production of $Z_{c,b}^+$:

Primakoff producit of *X*(3872):

HadSpec with CEBAF Upgrade

0	n

