SIMONETTA LIUTI UNIVERSITY OF VIRGINIA

J-FUTURE Messina, Italy, March 28th2002

How does the proton/neutron get its mass and spin and how do we test this dynamics?

The QCD Energy Momentum Tensor

• The mechanical properties of the proton are described by the EMT: but how do we probe this?

EMT matrix elements directly through gravitational field coupling

- The matrix elements describe the response of the system to a probing gravitational field, g_{µv}
- The couplings are too small to ever be measured!

Donoghue et al. PLB529 (2002): quantum corrections for different metrics

Figure 2: Feynman diagrams for spin 1/2 radiative corrections to $T_{\mu\nu}$.

$$\langle p', \Lambda \mid T^{\mu\nu} \mid p, \Lambda \rangle = \underline{A(t)} \overline{U}(p', \Lambda') [\gamma^{\mu} P^{\nu} + \gamma^{\nu} P^{\mu}] U(p, \Lambda) + \underline{B(t)} \overline{U}(p', \Lambda') i \frac{\sigma^{\mu(\nu} \Delta^{\nu})}{2M} U(p, \Lambda) \\ + \underline{C(t)} [\Delta^2 g^{\mu\nu} - \Delta^{\mu\nu}] \overline{U}(p', \Lambda') U(p, \Lambda) + \underline{\widetilde{C}(t)} g^{\mu\nu} \overline{U}(p', \Lambda') U(p, \Lambda)$$

off-forward

q and g not separately conserved

$$P = \frac{p+p'}{2}$$

$$\Delta = p'-p = q - q'$$

$$t = (p-p')^2 = \Delta^2$$

S=1/2

6

Deeply Virtual Compton Scattering (X. Ji, 1997)

From Generalized Parton Distributions Moments to EMT matrix elements

GPD GPD GPD Moments -> EMT Form Factors

2nd Mellin moment

Calculable on lattice...

M. Constantinou et al. (ETMC) arXiv 2006.08636

3/27/22

Gluons

Detmold and Shanahan PRD 2018

Kriesten et al arXiv 2021

 Recent surge in activities to understand the various components of the EMT, in particular mass (from energy density, T₀₀), transverse spin, pressure

 The response will not be found debating the fine details of the various possible definitions but it will be in our <u>ability to find experimental validations of the</u> <u>the theory</u>

Going beyond EMT definitions

- can we understand, based on physical models, the various physical components of <u>angular momentum</u>, <u>mass</u> and <u>internal forces/pressure</u>?
- Can <u>measurements</u> shed light on the orbital and spin components for quarks and gluons?
- Can we distinguish the Higgs mass component from the dynamical mass originating from quark and gluon interactions?
 - Role of the trace anomaly
- What are the observables for pressure, internal forces

Towards quantitative evaluations/validations

- Focus on the quark sector: a method to separate the orbital and spin components of J that gives results directly in terms of kinematic, (x,ξ,t, k_T) dependence of observables (Rajan, Engelhardt, SL)
- Based on generalized Lorentz Invariance Relations which establish a connection between k_T^2 moments of TMDs/GTMDs and twist 3 PDFs/GPDs

Role of genuine twist three terms

We find that a LIR violating term <u>gives</u> the difference between the Jaffe Manohar and Ji decompositions described through staple link in Burkardt, PRD 2013

$$L^{JM}(x) - L^{Ji}(x) = \mathcal{M}_{F_{14}} - \mathcal{M}_{F_{14}}|_{v=0} = -\int_{x}^{1} dy \,\mathscr{A}_{F_{14}}(y).$$

- 1

Can we measure this?

- There are two types of genuine twist three terms that cannot be separated in one single experiments
- The staple link component can, however, be determined in lattice QCD

Transverse Angular Momentum Sum Rule

A. Rajan, O. Alkassasbeh, M. Engelhardt, SL, to be submitted

$$\frac{1}{2} \int dx x (H+E) - \frac{1}{2} \int dx \mathcal{M}_T = \int dx x \left(\tilde{E}_{2T} + H + E + \frac{H_{2T}}{\xi} \right) + \frac{1}{2} \int dx g_T - \frac{1}{2} \int dx x \mathcal{A}_T$$

$$L_T$$

$$S_T$$

See also recent papers by Guo, Ji, Shiells <u>2101.05243</u> Lorce' et al.

What a sum rule should predict

$$J_q = L_q + \frac{1}{2}\Delta\Sigma_q$$

Measuring All This

graph from M. Defurne

Demystification of harmonics formalism

- In DVCS the virtual photon is along the z axis: φ
 dependence from usual rotation of polarization vector in
 helicity amp
- In BH the virtual photon is along the direction of p'
- Mismatch complicates the BH-DVCS term

3/27/22

2101.01826	Parametrization of Quark and Gluon Generalized Parton Distributions in a Dynamical Framework	
	Brandon Kriesten, ^{1, *} Philip Velie, ^{1, †} Emma Yeats, ^{1, ‡} Fernanda Yepez Lopez, ^{1, §} and Simonetta Liuti ^{1, ¶} ¹ Department of Physics, University of Virginia, Charlottesville, VA 22904, USA. PRD, accepted	
2012.04801	Deep learning analysis of deeply virtual exclusive photoprodu	ction
	Jake Grigsby, Brandon Kriesten, Joshua Hoskins, Simonetta Liuti, Peter Alonzi, and Matthias Burkardt Phys. Rev. D 104 , 016001 – Published 1 July 2021	
2011.04484	Novel Rosenbluth Extraction Framework for Compton Form Factors from Deeply Virtual Exclusive Experiments Brandon Kriesten,* Simonetta Liuti, [†] and Andrew Meyer [‡]	
2004.08890	Theory of deeply virtual Compton scattering off the unpolarized proton	
	Brandon Kriesten and Simonetta Liuti Phys. Rev. D 105 , 016015 – Published 18 January 2022	
1903.05742	Extraction of generalized parton distribution observables from deeply virtual electron proton scattering experiments	
	Brandon Kriesten, Andrew Meyer, Simonetta Liuti, Liliet Calero Diaz, Dustin Keller, Gary R. Goldstein, and J. Osvaldo Gonzalez-Hernandez Phys. Rev. D 101 , 054021 – Published 16 March 2020	
3/27/22		

21

Using formalism of helicity amplitudes

$$f_{\Lambda\Lambda'}^{\pm1\pm1} = \sum_{\lambda,\lambda'} g_{\lambda\lambda'}^{\pm1\pm1}(x,\xi,t;Q^2) \otimes A_{\Lambda'\lambda',\Lambda\lambda}(x,\xi,t),$$

$$\begin{split} A_{++,++} &= \sqrt{1-\xi^2} \left(\frac{H+\tilde{H}}{2} - \frac{\xi^2}{1-\xi^2} \frac{E+\tilde{E}}{2} \right) \ , \\ A_{-+,-+} &= \sqrt{1-\xi^2} \left(\frac{H-\tilde{H}}{2} - \frac{\xi^2}{1-\xi^2} \frac{E-\tilde{E}}{2} \right) \ , \\ A_{++,-+} &= -\mathrm{e}^{-\mathrm{i}\varphi} \frac{\sqrt{t_0-t}}{2m} \frac{E-\xi\tilde{E}}{2} \ , \\ A_{-+,++} &= \mathrm{e}^{\mathrm{i}\varphi} \frac{\sqrt{t_0-t}}{2m} \frac{E+\xi\tilde{E}}{2} \ , \end{split}$$

M. Diehl, Phys. Rep.388(2003) B. Kriesten et al. PRD 101(2020)

BH

$$\frac{d^5 \sigma_{unpol}^{BH}}{dx_{Bj} dQ^2 d|t| d\phi d\phi_S} \equiv \frac{\Gamma}{t} F_{UU}^{BH} = \frac{\Gamma}{t} \left[A(y, x_{Bj}, t, Q^2, \phi) \left(F_1^2 + \tau F_2^2 \right) + B(y, x_{Bj}, t, Q^2, \phi) \tau G_M^2(t) \right]$$

$$\begin{split} A = & \frac{16 M^2}{t(k \, q')(k' \, q')} \left[4\tau \Big((k \, P)^2 + (k' \, P)^2 \Big) - (\tau + 1) \Big((k \, \Delta)^2 + (k' \, \Delta)^2 \Big) \right] \\ B = & \frac{32 M^2}{t(k \, q')(k' \, q')} \Big[(k \, \Delta)^2 + (k' \, \Delta)^2 \Big] \,, \end{split}$$

Longitudinal to transverse photon polarization ratio ϵ

$$\epsilon_{BH} = \left(1 + \frac{B}{A}(1+\tau)\right)^{-1}$$

Kriesten, SL, hep-ph/2004.08890

...compared to ELASTIC SCATTERING

$\left(\frac{d\sigma}{d\Omega}\right)_{0} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \frac{\epsilon (G_{E}^{N})^{2} + \tau (G_{M}^{N})^{2}}{\epsilon (1+\tau)},$

where N = p for a proton and N = n for a neutron, (the recoil-corrected relativistic point-particle (Mott) and τ , ϵ are dimensionless kinematic variables:

$$\tau = \frac{Q^2}{4m_N^2}, \quad \epsilon = \left[1 + 2(1+\tau)\tan^2\frac{\theta}{2}\right]^{-1},$$

J. Arrington, G. Cates, S. Riordan, Z. Ye, B. Wojsetowski, A. Puckett ...

16

...compared to BKM, NPB (2001)

$$|\mathcal{T}_{\rm BH}|^2 = \frac{e^6}{x_{\rm B}^2 y^2 (1+\epsilon^2)^2 \Delta^2 \mathcal{P}_1(\phi) \mathcal{P}_2(\phi)} \\ \times \left\{ c_0^{\rm BH} + \sum_{n=1}^2 c_n^{\rm BH} \cos\left(n\phi\right) + s_1^{\rm BH} \sin\left(\phi\right) \right\},$$

$$\begin{split} c^{\rm BH}_{0,\rm unp} &= 8K^2 \bigg\{ \Big(2+3\epsilon^2\Big) \frac{Q^2}{\Delta^2} \Big(F_1^2 - \frac{\Delta^2}{4M^2} F_2^2\Big) + 2x_{\rm B}^2 (F_1 + F_2)^2 \bigg\} \\ &+ (2-y)^2 \bigg\{ \Big(2+\epsilon^2\Big) \bigg[\frac{4x_{\rm B}^2 M^2}{\Delta^2} \Big(1+\frac{\Delta^2}{Q^2}\Big)^2 \\ &+ 4(1-x_{\rm B}) \Big(1+x_{\rm B}\frac{\Delta^2}{Q^2}\Big) \bigg] \Big(F_1^2 - \frac{\Delta^2}{4M^2} F_2^2\Big) \\ &+ 4x_{\rm B}^2 \bigg[x_{\rm B} + \Big(1-x_{\rm B} + \frac{\epsilon^2}{2}\Big) \Big(1-\frac{\Delta^2}{Q^2}\Big)^2 \\ &- x_{\rm B}(1-2x_{\rm B})\frac{\Delta^4}{Q^4} \bigg] (F_1 + F_2)^2 \bigg\} \\ &+ 8\Big(1+\epsilon^2\Big) \Big(1-y-\frac{\epsilon^2 y^2}{4}\Big) \\ &\times \bigg\{ 2\epsilon^2 \Big(1-\frac{\Delta^2}{4M^2}\Big) \Big(F_1^2 - \frac{\Delta^2}{4M^2} F_2^2\Big) - x_{\rm B}^2 \Big(1-\frac{\Delta^2}{Q^2}\Big)^2 (F_1 + F_2)^2 \bigg\} \end{split}$$

A.V. Belitsky et al. / Nuclear Physics B 629 (2002) 323-392

$$c_{1,\text{unp}}^{\text{BH}} = 8K(2-y) \left\{ \left(\frac{4x_{\text{B}}^2 M^2}{\Delta^2} - 2x_{\text{B}} - \epsilon^2 \right) \left(F_1^2 - \frac{\Delta^2}{4M^2} F_2^2 \right) \right. \\ \left. + 2x_{\text{B}}^2 \left(1 - (1 - 2x_{\text{B}}) \frac{\Delta^2}{\mathcal{Q}^2} \right) (F_1 + F_2)^2 \right\}, \\ c_{2,\text{unp}}^{\text{BH}} = 8x_{\text{B}}^2 K^2 \left\{ \frac{4M^2}{\Delta^2} \left(F_1^2 - \frac{\Delta^2}{4M^2} F_2^2 \right) + 2(F_1 + F_2)^2 \right\}.$$

 $)^2$

$$F_{UU}^{\mathcal{I}} = F_{UU}^{\mathcal{I},tw2} + \frac{K}{\sqrt{Q^2}} F_{UU}^{\mathcal{I},tw3}$$

BH-DVCS interference

$$F_{UU}^{\mathcal{I},tw2} = A_{UU}^{\mathcal{I}} \Re e \left(F_1 \mathcal{H} + \tau F_2 \mathcal{E} \right) + B_{UU}^{\mathcal{I}} G_M \Re e \left(\mathcal{H} + \mathcal{E} \right) + C_{UU}^{\mathcal{I}} G_M \Re e \widetilde{\mathcal{H}}$$

 $\begin{array}{cccc} A_{UU}{}^{I} & B_{UU}{}^{I} & C_{UU}{}^{I} & & \text{are } \phi \text{ dependent coefficients} \end{array} \end{array}$

26

Linear Plots!!!

• Rosenbluth Separated BH-DVCS interference data

Twist 3 BH-DVCS interference

$$F_{UU}^{\mathcal{I}} = F_{UU}^{\mathcal{I},tw2} + \frac{K}{\sqrt{Q^2}} F_{UU}^{\mathcal{I},tw3}$$

$$\begin{split} F_{UU}^{\mathcal{I},tw3} &= A_{UU}^{(3)\mathcal{I}} \left[F_1 \left(\Re e(2\widetilde{\mathcal{H}}_{2T} + \mathcal{E}_{2T}) - \Re e(2\widetilde{\mathcal{H}}_{2T}' + \mathcal{E}_{2T}') \right) + F_2 \left(\Re e(\mathcal{H}_{2T} + \tau \widetilde{\mathcal{H}}_{2T}) - \Re e(\mathcal{H}_{2T}' + \tau \widetilde{\mathcal{H}}_{2T}') \right) \\ &+ B_{UU}^{(3)\mathcal{I}} G_M \left(\Re e \widetilde{\mathcal{E}}_{2T} - \Re e \widetilde{\mathcal{E}}_{2T}' \right) \\ &+ C_{UU}^{(3)\mathcal{I}} G_M \left[2\xi (\Re e \mathcal{H}_{2T} - \Re e \mathcal{H}_{2T}') - \tau \left(\Re e(\widetilde{\mathcal{E}}_{2T} - \xi \mathcal{E}_{2T}) - \Re e(\widetilde{\mathcal{E}}_{2T}' - \xi \mathcal{E}_{2T}') \right) \right] \end{split}$$

Twist 3 GPDs Physical Interpretation

GPD	$P_q P_p$	TMD	Ref. 1
H^{\perp}	UU	f^{\perp}	$2\widetilde{H}_{2T} + E_{2T}$
\widetilde{H}_L^\perp	LL	g_L^\perp	$2\widetilde{H}_{2T}' + E_{2T}'$
H_L^{\perp}	UL	$f_L^{\perp (*)}$	$\widetilde{E}_{2T} - \xi E_{2T}$
\widetilde{H}^{\perp}	LU	$g^{\perp(*)}$	$\widetilde{E}_{2T}' - \xi E_{2T}'$
$H_T^{(3)}$	UT	$f_T^{(*)}$	$H_{2T} + \tau \widetilde{H}_{2T}$
$\widetilde{H}_T^{(3)}$	LT	g_T'	$H_{2T}' + \tau \widetilde{H}_{2T}'$

1/Q correction to H
 1/Q correction to H
 Orbital Angular Momentum L
 NEW!! Spin Orbit correlation L •S
 1/Q correction to E
 1/Q correction to E

(*) T-odd

[1] Meissner, Metz and Schlegel, JHEP(2009)

3/27/22

observables Twist 2	$\mathbf{H} + \frac{\xi^2}{1-\xi}E$ $\mathbf{H} + \frac{\xi^2}{1-\xi}\widetilde{E}$ $\mathbf{H} + \frac{\xi^2}{1-\xi}\widetilde{E}$
	Ĕ H+E
Twist 3	$\begin{aligned} & 2\widetilde{\mathbf{H}}_{\mathbf{2T}} + \mathbf{E}_{\mathbf{2T}} - \xi \widetilde{E}_{2} \\ & 2\widetilde{\mathbf{H}}_{\mathbf{2T}}' + \mathbf{E}_{\mathbf{2T}}' - \xi \widetilde{E}_{2}' \end{aligned}$
	$egin{aligned} \mathbf{H_{2T}} + rac{\mathbf{t_o} - \mathbf{t}}{4\mathbf{M^2}} \widetilde{\mathbf{H}}_{2T} \ \mathbf{H'_{2T}} + rac{\mathbf{t_o} - \mathbf{t}}{4\mathbf{M^2}} \widetilde{\mathbf{H}}'_{2T} \end{aligned}$
Newly accessible	$\widetilde{\mathbf{E}}_{2\mathbf{T}} - \xi E_{2T}$ $\widetilde{\mathbf{E}}_{2\mathbf{T}}' - \xi E_{2T}'$ $\widetilde{\mathbf{H}}_{2\mathbf{T}}$
	\widetilde{H}'_{2T}

		Beam target helicity						
GPD	Twist	$P_q P_p$	TMD	$P_{Beam}P_p$ (DVCS)	$P_{Beam}P_p$ (\mathcal{I})			
$\mathbf{I} + \frac{\xi^2}{1-\xi}E$	2	UU	f_1	$UU, LL, UT^{\sin(\phi-\phi_s)}, LT^{\cos(\phi-\phi_s)}$	$UU^{\cos\phi}, LU^{\sin\phi}$			
$\widetilde{\mathbf{I}} + \frac{\xi^2}{1-\xi}\widetilde{E}$	2	LL	g_1	$UU, LL, UT^{\sin(\phi-\phi_s)}, LT^{\cos(\phi-\phi_s)}$	$UU^{\cos\phi}, UL^{\cos\phi}, LU^{\sin\phi}, LL^{\sin\phi}, UT^{\frac{\cos\phi}{\sin\phi}}, L$	$T^{\cos\phi}$		
${f E}$	2	UT	$f_{1T}^{\perp (*)}$	$UT^{\sin(\phi-\phi_s)}, LT^{\cos(\phi-\phi_s)}$	$UU^{\cos\phi}, LU^{\sin\phi}, UT, LT, UT^{\cos\phi}, UT^{\sin\phi}$	ϕ		
$\widetilde{\mathbf{E}}$	2	LT	g_{1T}	$UT^{\sin(\phi-\phi_s)}, LT^{\cos(\phi-\phi_s)}$	$UL^{\sin\phi}, LL^{\cos\phi}, UT^{\cos\phi}, UT^{\sin\phi}$			
$\mathbf{H} + \mathbf{E}$	2	-	-	-	$UU^{\cos\phi}, LU^{\sin\phi}, UL^{\sin\phi}, LL^{\cos\phi}, UT^{\cos\phi}, UT^{\phi}, UT^{\phi$	$T^{\sin\phi}$		
$+ \mathbf{E}_{2\mathbf{T}} - \xi \widetilde{E}_{2T}$	3	UU	f^{\perp}	$UU^{\cos\phi}, LU^{\sin\phi}$	UU,LU			
$+ \mathbf{E}'_{2\mathbf{T}} - \xi \widetilde{E}'_{2T}$	3	LL	g_L^\perp	$UU^{\cos\phi}, LU^{\sin\phi}$	UU,LU			
$+ \ rac{\mathbf{t_o} - \mathbf{t}}{4 \mathbf{M^2}} \widetilde{\mathbf{H}}_{\mathbf{2T}}$	3	UT	$f_T^{(*)}, f_T^{\perp (*)}$	$UU^{\cos\phi}, UL^{\cos\phi}, LU^{\sin\phi}, LL^{\cos\phi}$	UU, LU Transv. C)AM		
$+ \ \frac{\mathbf{t_o} - \mathbf{t}}{4\mathbf{M^2}} \widetilde{\mathbf{H}}_{\mathbf{2T}}'$	3	LT	g_T',g_T^\perp	$UU^{\cos\phi}, UL^{\cos\phi}, LU^{\sin\phi}, LL^{\cos\phi}$	UU, LU			
$\mathbf{z_T} - \xi E_{2T}$	3	UL	$f_L^{\perp (*)}$	$UU^{\cos\phi}, UL^{\cos\phi}, LU^{\sin\phi}, LL^{\cos\phi}$	UU, LU, UT OAI	M		
$\xi'_{2\mathbf{T}} - \xi E'_{2T}$	3	LU	$g^{\perp(*)}$	$UU^{\cos\phi}, UL^{\cos\phi}, LU^{\sin\phi}, LL^{\cos\phi}$	UU, LU, UT Spin	Orbi		
$\widetilde{\mathbf{H}}_{\mathbf{2T}}$	3	UT_x	$f_T^{\perp (*)}$	$UU^{\cos\phi}, UL^{\cos\phi}, LU^{\sin\phi}, LL^{\cos\phi}$	UU, LU, UT			
$\widetilde{\mathbf{H}}_{\mathbf{2T}}'$	3	LT_x	g_T^\perp	$UU^{\cos\phi}, UL^{\cos\phi}, LU^{\sin\phi}, LL^{\cos\phi}$	UU, LU, UT			

Kriesten et al., Phys.Rev.D 101 (2020) Kriesten and SL, 2004.08890

B. Kriesten, SL, in preparation

B. Kriesten, SL, in preparation

Comparison with EIC low energy scenario

B. Kriesten, SL, in preparation

CONCLUSIONS

- We presented avenues to identify observables sensitive to both longitudinal and transverse OAM
- Jefferson Lab @24 GeV will make history as the we uncover the mechanical properties the of the proton and observe its spatial images!
- To observe, evaluate and interpret GPDs and Wigner distributions at the subatomic level requires stepping up data analyses. To accomplish this we need
 - Physics motivated cross section formulation
 - Develop methods to extract quantities from data including numerical/analytic/advanced ML and quantum computing method

This program is on its way! We would be happy to interact

UVA+ODU ML group

Finally, advertisements!!

QCD Evolution Workshop, May 9-13-22 at University of Virginia https://discovery.phys.virginia.edu/research/groups/qcd22/workshop.html

Brandon Kriesten invited talk at APS April meeting (April 10)